#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Preprocessing code for the WayMo Open dataset # dataset at https://github.com/waymo-research/waymo-open-dataset # 1) Accept the license # 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2 # 3) put all .tfrecord files in '/path/to/waymo_dir' # 4) install the waymo_open_dataset package with # `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4` # 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir` # -------------------------------------------------------- import json import os import os.path as osp import shutil import sys import numpy as np import PIL.Image from tqdm import tqdm os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" import cv2 import tensorflow.compat.v1 as tf tf.enable_eager_execution() import path_to_root # noqa from dust3r.datasets.utils import cropping from dust3r.utils.geometry import geotrf, inv from dust3r.utils.image import imread_cv2 from dust3r.utils.parallel import parallel_processes as parallel_map from dust3r.viz import show_raw_pointcloud def get_parser(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--waymo_dir", required=True) parser.add_argument("--precomputed_pairs", required=True) parser.add_argument("--output_dir", default="data/waymo_processed") parser.add_argument("--workers", type=int, default=1) return parser def main(waymo_root, pairs_path, output_dir, workers=1): extract_frames(waymo_root, output_dir, workers=workers) make_crops(output_dir, workers=args.workers) # make sure all pairs are there with np.load(pairs_path) as data: scenes = data["scenes"] frames = data["frames"] pairs = data["pairs"] # (array of (scene_id, img1_id, img2_id) for scene_id, im1_id, im2_id in pairs: for im_id in (im1_id, im2_id): path = osp.join(output_dir, scenes[scene_id], frames[im_id] + ".jpg") assert osp.isfile( path ), f"Missing a file at {path=}\nDid you download all .tfrecord files?" shutil.rmtree(osp.join(output_dir, "tmp")) print("Done! all data generated at", output_dir) def _list_sequences(db_root): print(">> Looking for sequences in", db_root) res = sorted(f for f in os.listdir(db_root) if f.endswith(".tfrecord")) print(f" found {len(res)} sequences") return res def extract_frames(db_root, output_dir, workers=8): sequences = _list_sequences(db_root) output_dir = osp.join(output_dir, "tmp") print(">> outputing result to", output_dir) args = [(db_root, output_dir, seq) for seq in sequences] parallel_map(process_one_seq, args, star_args=True, workers=workers) def process_one_seq(db_root, output_dir, seq): out_dir = osp.join(output_dir, seq) os.makedirs(out_dir, exist_ok=True) calib_path = osp.join(out_dir, "calib.json") if osp.isfile(calib_path): return try: with tf.device("/CPU:0"): calib, frames = extract_frames_one_seq(osp.join(db_root, seq)) except RuntimeError: print(f"/!\\ Error with sequence {seq} /!\\", file=sys.stderr) return # nothing is saved for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)): for cam_idx, view in views.items(): img = PIL.Image.fromarray(view.pop("img")) img.save(osp.join(out_dir, f"{f:05d}_{cam_idx}.jpg")) np.savez(osp.join(out_dir, f"{f:05d}_{cam_idx}.npz"), **view) with open(calib_path, "w") as f: json.dump(calib, f) def extract_frames_one_seq(filename): from waymo_open_dataset import dataset_pb2 as open_dataset from waymo_open_dataset.utils import frame_utils print(">> Opening", filename) dataset = tf.data.TFRecordDataset(filename, compression_type="") calib = None frames = [] for data in tqdm(dataset, leave=False): frame = open_dataset.Frame() frame.ParseFromString(bytearray(data.numpy())) content = frame_utils.parse_range_image_and_camera_projection(frame) range_images, camera_projections, _, range_image_top_pose = content views = {} frames.append((frame.context.name, views)) # once in a sequence, read camera calibration info if calib is None: calib = [] for cam in frame.context.camera_calibrations: calib.append( ( cam.name, dict( width=cam.width, height=cam.height, intrinsics=list(cam.intrinsic), extrinsics=list(cam.extrinsic.transform), ), ) ) # convert LIDAR to pointcloud points, cp_points = frame_utils.convert_range_image_to_point_cloud( frame, range_images, camera_projections, range_image_top_pose ) # 3d points in vehicle frame. points_all = np.concatenate(points, axis=0) cp_points_all = np.concatenate(cp_points, axis=0) # The distance between lidar points and vehicle frame origin. cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32) for i, image in enumerate(frame.images): # select relevant 3D points for this view mask = tf.equal(cp_points_all_tensor[..., 0], image.name) cp_points_msk_tensor = tf.cast( tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32 ) pose = np.asarray(image.pose.transform).reshape(4, 4) timestamp = image.pose_timestamp rgb = tf.image.decode_jpeg(image.image).numpy() pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16) pts3d = points_all[mask.numpy()] views[image.name] = dict( img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp ) if not "show full point cloud": show_raw_pointcloud( [v["pts3d"] for v in views.values()], [v["img"] for v in views.values()] ) return calib, frames def make_crops(output_dir, workers=16, **kw): tmp_dir = osp.join(output_dir, "tmp") sequences = _list_sequences(tmp_dir) args = [(tmp_dir, output_dir, seq) for seq in sequences] parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0) def crop_one_seq(input_dir, output_dir, seq, resolution=512): seq_dir = osp.join(input_dir, seq) out_dir = osp.join(output_dir, seq) if osp.isfile(osp.join(out_dir, "00100_1.jpg")): return os.makedirs(out_dir, exist_ok=True) # load calibration file try: with open(osp.join(seq_dir, "calib.json")) as f: calib = json.load(f) except IOError: print(f"/!\\ Error: Missing calib.json in sequence {seq} /!\\", file=sys.stderr) return axes_transformation = np.array( [[0, -1, 0, 0], [0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 0, 1]] ) cam_K = {} cam_distortion = {} cam_res = {} cam_to_car = {} for cam_idx, cam_info in calib: cam_idx = str(cam_idx) cam_res[cam_idx] = (W, H) = (cam_info["width"], cam_info["height"]) f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info["intrinsics"] cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)]) cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3]) cam_to_car[cam_idx] = np.asarray(cam_info["extrinsics"]).reshape( 4, 4 ) # cam-to-vehicle frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith(".jpg")) # from dust3r.viz import SceneViz # viz = SceneViz() for frame in tqdm(frames, leave=False): cam_idx = frame[-2] # cam index assert cam_idx in "12345", f"bad {cam_idx=} in {frame=}" data = np.load(osp.join(seq_dir, frame + "npz")) car_to_world = data["pose"] W, H = cam_res[cam_idx] # load depthmap pos2d = data["pixels"].round().astype(np.uint16) x, y = pos2d.T pts3d = data["pts3d"] # already in the car frame pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d) # X=LEFT_RIGHT y=ALTITUDE z=DEPTH # load image image = imread_cv2(osp.join(seq_dir, frame + "jpg")) # downscale image output_resolution = (resolution, 1) if W > H else (1, resolution) image, _, intrinsics2 = cropping.rescale_image_depthmap( image, None, cam_K[cam_idx], output_resolution ) image.save(osp.join(out_dir, frame + "jpg"), quality=80) # save as an EXR file? yes it's smaller (and easier to load) W, H = image.size depthmap = np.zeros((H, W), dtype=np.float32) pos2d = ( geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16) ) x, y = pos2d.T depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2] cv2.imwrite(osp.join(out_dir, frame + "exr"), depthmap) # save camera parametes cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation) np.savez( osp.join(out_dir, frame + "npz"), intrinsics=intrinsics2, cam2world=cam2world, distortion=cam_distortion[cam_idx], ) # viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world) # viz.show() if __name__ == "__main__": parser = get_parser() args = parser.parse_args() main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers)