File size: 13,154 Bytes
1bb1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

# --------------------------------------------------------
# Losses, metrics per batch, metrics per dataset
# --------------------------------------------------------

import torch
import torch.nn.functional as F
from torch import nn


def _get_gtnorm(gt):
    if gt.size(1) == 1:  # stereo
        return gt
    # flow
    return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True))  # Bx1xHxW


############ losses without confidence


class L1Loss(nn.Module):
    def __init__(self, max_gtnorm=None):
        super().__init__()
        self.max_gtnorm = max_gtnorm
        self.with_conf = False

    def _error(self, gt, predictions):
        return torch.abs(gt - predictions)

    def forward(self, predictions, gt, inspect=False):
        mask = torch.isfinite(gt)
        if self.max_gtnorm is not None:
            mask *= _get_gtnorm(gt).expand(-1, gt.size(1), -1, -1) < self.max_gtnorm
        if inspect:
            return self._error(gt, predictions)
        return self._error(gt[mask], predictions[mask]).mean()


############## losses with confience
## there are several parametrizations


class LaplacianLoss(nn.Module):  # used for CroCo-Stereo on ETH3D, d'=exp(d)
    def __init__(self, max_gtnorm=None):
        super().__init__()
        self.max_gtnorm = max_gtnorm
        self.with_conf = True

    def forward(self, predictions, gt, conf):
        mask = torch.isfinite(gt)
        mask = mask[:, 0, :, :]
        if self.max_gtnorm is not None:
            mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
        conf = conf.squeeze(1)
        return (
            torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask])
            + conf[mask]
        ).mean()  # + torch.log(2) => which is a constant


class LaplacianLossBounded(
    nn.Module
):  # used for CroCo-Flow ; in the equation of the paper, we have a=1/b
    def __init__(self, max_gtnorm=10000.0, a=0.25, b=4.0):
        super().__init__()
        self.max_gtnorm = max_gtnorm
        self.with_conf = True
        self.a, self.b = a, b

    def forward(self, predictions, gt, conf):
        mask = torch.isfinite(gt)
        mask = mask[:, 0, :, :]
        if self.max_gtnorm is not None:
            mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
        conf = conf.squeeze(1)
        conf = (self.b - self.a) * torch.sigmoid(conf) + self.a
        return (
            torch.abs(gt - predictions).sum(dim=1)[mask] / conf[mask]
            + torch.log(conf)[mask]
        ).mean()  # + torch.log(2) => which is a constant


class LaplacianLossBounded2(
    nn.Module
):  # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b
    def __init__(self, max_gtnorm=None, a=3.0, b=3.0):
        super().__init__()
        self.max_gtnorm = max_gtnorm
        self.with_conf = True
        self.a, self.b = a, b

    def forward(self, predictions, gt, conf):
        mask = torch.isfinite(gt)
        mask = mask[:, 0, :, :]
        if self.max_gtnorm is not None:
            mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
        conf = conf.squeeze(1)
        conf = 2 * self.a * (torch.sigmoid(conf / self.b) - 0.5)
        return (
            torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask])
            + conf[mask]
        ).mean()  # + torch.log(2) => which is a constant


############## metrics per batch


class StereoMetrics(nn.Module):
    def __init__(self, do_quantile=False):
        super().__init__()
        self.bad_ths = [0.5, 1, 2, 3]
        self.do_quantile = do_quantile

    def forward(self, predictions, gt):
        B = predictions.size(0)
        metrics = {}
        gtcopy = gt.clone()
        mask = torch.isfinite(gtcopy)
        gtcopy[
            ~mask
        ] = 999999.0  # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0
        Npx = mask.view(B, -1).sum(dim=1)
        L1error = (torch.abs(gtcopy - predictions) * mask).view(B, -1)
        L2error = (torch.square(gtcopy - predictions) * mask).view(B, -1)
        # avgerr
        metrics["avgerr"] = torch.mean(L1error.sum(dim=1) / Npx)
        # rmse
        metrics["rmse"] = torch.sqrt(L2error.sum(dim=1) / Npx).mean(dim=0)
        # err > t for t in [0.5,1,2,3]
        for ths in self.bad_ths:
            metrics["bad@{:.1f}".format(ths)] = (
                ((L1error > ths) * mask.view(B, -1)).sum(dim=1) / Npx
            ).mean(dim=0) * 100
        return metrics


class FlowMetrics(nn.Module):
    def __init__(self):
        super().__init__()
        self.bad_ths = [1, 3, 5]

    def forward(self, predictions, gt):
        B = predictions.size(0)
        metrics = {}
        mask = torch.isfinite(gt[:, 0, :, :])  # both x and y would be infinite
        Npx = mask.view(B, -1).sum(dim=1)
        gtcopy = (
            gt.clone()
        )  # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored
        gtcopy[:, 0, :, :][~mask] = 999999.0
        gtcopy[:, 1, :, :][~mask] = 999999.0
        L1error = (torch.abs(gtcopy - predictions).sum(dim=1) * mask).view(B, -1)
        L2error = (
            torch.sqrt(torch.sum(torch.square(gtcopy - predictions), dim=1)) * mask
        ).view(B, -1)
        metrics["L1err"] = torch.mean(L1error.sum(dim=1) / Npx)
        metrics["EPE"] = torch.mean(L2error.sum(dim=1) / Npx)
        for ths in self.bad_ths:
            metrics["bad@{:.1f}".format(ths)] = (
                ((L2error > ths) * mask.view(B, -1)).sum(dim=1) / Npx
            ).mean(dim=0) * 100
        return metrics


############## metrics per dataset
## we update the average and maintain the number of pixels while adding data batch per batch
## at the beggining, call reset()
## after each batch, call add_batch(...)
## at the end: call get_results()


class StereoDatasetMetrics(nn.Module):
    def __init__(self):
        super().__init__()
        self.bad_ths = [0.5, 1, 2, 3]

    def reset(self):
        self.agg_N = 0  # number of pixels so far
        self.agg_L1err = torch.tensor(0.0)  # L1 error so far
        self.agg_Nbad = [0 for _ in self.bad_ths]  # counter of bad pixels
        self._metrics = None

    def add_batch(self, predictions, gt):
        assert predictions.size(1) == 1, predictions.size()
        assert gt.size(1) == 1, gt.size()
        if (
            gt.size(2) == predictions.size(2) * 2
            and gt.size(3) == predictions.size(3) * 2
        ):  # special case for Spring ...
            L1err = torch.minimum(
                torch.minimum(
                    torch.minimum(
                        torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1),
                        torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1),
                    ),
                    torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1),
                ),
                torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1),
            )
            valid = torch.isfinite(L1err)
        else:
            valid = torch.isfinite(gt[:, 0, :, :])  # both x and y would be infinite
            L1err = torch.sum(torch.abs(gt - predictions), dim=1)
        N = valid.sum()
        Nnew = self.agg_N + N
        self.agg_L1err = (
            float(self.agg_N) / Nnew * self.agg_L1err
            + L1err[valid].mean().cpu() * float(N) / Nnew
        )
        self.agg_N = Nnew
        for i, th in enumerate(self.bad_ths):
            self.agg_Nbad[i] += (L1err[valid] > th).sum().cpu()

    def _compute_metrics(self):
        if self._metrics is not None:
            return
        out = {}
        out["L1err"] = self.agg_L1err.item()
        for i, th in enumerate(self.bad_ths):
            out["bad@{:.1f}".format(th)] = (
                float(self.agg_Nbad[i]) / self.agg_N
            ).item() * 100.0
        self._metrics = out

    def get_results(self):
        self._compute_metrics()  # to avoid recompute them multiple times
        return self._metrics


class FlowDatasetMetrics(nn.Module):
    def __init__(self):
        super().__init__()
        self.bad_ths = [0.5, 1, 3, 5]
        self.speed_ths = [(0, 10), (10, 40), (40, torch.inf)]

    def reset(self):
        self.agg_N = 0  # number of pixels so far
        self.agg_L1err = torch.tensor(0.0)  # L1 error so far
        self.agg_L2err = torch.tensor(0.0)  # L2 (=EPE) error so far
        self.agg_Nbad = [0 for _ in self.bad_ths]  # counter of bad pixels
        self.agg_EPEspeed = [
            torch.tensor(0.0) for _ in self.speed_ths
        ]  # EPE per speed bin so far
        self.agg_Nspeed = [0 for _ in self.speed_ths]  # N pixels per speed bin so far
        self._metrics = None
        self.pairname_results = {}

    def add_batch(self, predictions, gt):
        assert predictions.size(1) == 2, predictions.size()
        assert gt.size(1) == 2, gt.size()
        if (
            gt.size(2) == predictions.size(2) * 2
            and gt.size(3) == predictions.size(3) * 2
        ):  # special case for Spring ...
            L1err = torch.minimum(
                torch.minimum(
                    torch.minimum(
                        torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1),
                        torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1),
                    ),
                    torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1),
                ),
                torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1),
            )
            L2err = torch.minimum(
                torch.minimum(
                    torch.minimum(
                        torch.sqrt(
                            torch.sum(
                                torch.square(gt[:, :, 0::2, 0::2] - predictions), dim=1
                            )
                        ),
                        torch.sqrt(
                            torch.sum(
                                torch.square(gt[:, :, 1::2, 0::2] - predictions), dim=1
                            )
                        ),
                    ),
                    torch.sqrt(
                        torch.sum(
                            torch.square(gt[:, :, 0::2, 1::2] - predictions), dim=1
                        )
                    ),
                ),
                torch.sqrt(
                    torch.sum(torch.square(gt[:, :, 1::2, 1::2] - predictions), dim=1)
                ),
            )
            valid = torch.isfinite(L1err)
            gtspeed = (
                torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 0::2]), dim=1))
                + torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 1::2]), dim=1))
                + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 0::2]), dim=1))
                + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 1::2]), dim=1))
            ) / 4.0  # let's just average them
        else:
            valid = torch.isfinite(gt[:, 0, :, :])  # both x and y would be infinite
            L1err = torch.sum(torch.abs(gt - predictions), dim=1)
            L2err = torch.sqrt(torch.sum(torch.square(gt - predictions), dim=1))
            gtspeed = torch.sqrt(torch.sum(torch.square(gt), dim=1))
        N = valid.sum()
        Nnew = self.agg_N + N
        self.agg_L1err = (
            float(self.agg_N) / Nnew * self.agg_L1err
            + L1err[valid].mean().cpu() * float(N) / Nnew
        )
        self.agg_L2err = (
            float(self.agg_N) / Nnew * self.agg_L2err
            + L2err[valid].mean().cpu() * float(N) / Nnew
        )
        self.agg_N = Nnew
        for i, th in enumerate(self.bad_ths):
            self.agg_Nbad[i] += (L2err[valid] > th).sum().cpu()
        for i, (th1, th2) in enumerate(self.speed_ths):
            vv = (gtspeed[valid] >= th1) * (gtspeed[valid] < th2)
            iNspeed = vv.sum()
            if iNspeed == 0:
                continue
            iNnew = self.agg_Nspeed[i] + iNspeed
            self.agg_EPEspeed[i] = (
                float(self.agg_Nspeed[i]) / iNnew * self.agg_EPEspeed[i]
                + float(iNspeed) / iNnew * L2err[valid][vv].mean().cpu()
            )
            self.agg_Nspeed[i] = iNnew

    def _compute_metrics(self):
        if self._metrics is not None:
            return
        out = {}
        out["L1err"] = self.agg_L1err.item()
        out["EPE"] = self.agg_L2err.item()
        for i, th in enumerate(self.bad_ths):
            out["bad@{:.1f}".format(th)] = (
                float(self.agg_Nbad[i]) / self.agg_N
            ).item() * 100.0
        for i, (th1, th2) in enumerate(self.speed_ths):
            out[
                "s{:d}{:s}".format(th1, "-" + str(th2) if th2 < torch.inf else "+")
            ] = self.agg_EPEspeed[i].item()
        self._metrics = out

    def get_results(self):
        self._compute_metrics()  # to avoid recompute them multiple times
        return self._metrics