# app.py from transformers import pipeline import gradio as gr # Load the image captioning pipeline pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") # Define the function that gets the caption def caption_image(image): result = pipe(image) return result[0]["generated_text"] # Build the Gradio interface interface = gr.Interface( fn=caption_image, inputs=gr.Image(type="pil"), outputs="text", title="🖼️ BLIP Image Captioning", description="Upload an image and get a caption using Salesforce's BLIP image captioning model." ) # Launch the app if __name__ == "__main__": interface.launch()