|
import time
|
|
import re
|
|
import json
|
|
import io
|
|
import os
|
|
import boto3
|
|
import copy
|
|
|
|
from tqdm import tqdm
|
|
from PIL import Image, ImageChops, ImageFile, ImageDraw
|
|
from typing import List, Dict, Tuple
|
|
import pandas as pd
|
|
|
|
from pdfminer.high_level import extract_pages
|
|
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno
|
|
from pikepdf import Pdf, Dictionary, Name
|
|
from pymupdf import Rect, Page, Document
|
|
import gradio as gr
|
|
from gradio import Progress
|
|
from collections import defaultdict
|
|
|
|
from tools.config import OUTPUT_FOLDER, IMAGES_DPI, MAX_IMAGE_PIXELS, RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION, PAGE_BREAK_VALUE, MAX_TIME_VALUE, LOAD_TRUNCATED_IMAGES, INPUT_FOLDER
|
|
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult, run_page_text_redaction, merge_text_bounding_boxes, recreate_page_line_level_ocr_results_with_page
|
|
from tools.file_conversion import convert_annotation_json_to_review_df, redact_whole_pymupdf_page, redact_single_box, convert_pymupdf_to_image_coords, is_pdf, is_pdf_or_image, prepare_image_or_pdf, divide_coordinates_by_page_sizes, multiply_coordinates_by_page_sizes, convert_annotation_data_to_dataframe, divide_coordinates_by_page_sizes, create_annotation_dicts_from_annotation_df, remove_duplicate_images_with_blank_boxes, fill_missing_ids, fill_missing_box_ids, load_and_convert_ocr_results_with_words_json
|
|
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_entities, custom_recogniser, custom_word_list_recogniser, CustomWordFuzzyRecognizer
|
|
from tools.helper_functions import get_file_name_without_type, clean_unicode_text, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, no_redaction_option
|
|
from tools.aws_textract import analyse_page_with_textract, json_to_ocrresult, load_and_convert_textract_json
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true"
|
|
if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None
|
|
else: Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS
|
|
image_dpi = float(IMAGES_DPI)
|
|
|
|
def bounding_boxes_overlap(box1, box2):
|
|
"""Check if two bounding boxes overlap."""
|
|
return (box1[0] < box2[2] and box2[0] < box1[2] and
|
|
box1[1] < box2[3] and box2[1] < box1[3])
|
|
|
|
def sum_numbers_before_seconds(string:str):
|
|
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
|
|
|
|
Args:
|
|
string: The input string.
|
|
|
|
Returns:
|
|
The sum of all numbers before 'seconds' in the string.
|
|
"""
|
|
|
|
|
|
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)
|
|
|
|
|
|
numbers = [float(num.split()[0]) for num in numbers]
|
|
|
|
|
|
sum_of_numbers = round(sum(numbers),1)
|
|
|
|
return sum_of_numbers
|
|
|
|
def choose_and_run_redactor(file_paths:List[str],
|
|
prepared_pdf_file_paths:List[str],
|
|
pdf_image_file_paths:List[str],
|
|
language:str,
|
|
chosen_redact_entities:List[str],
|
|
chosen_redact_comprehend_entities:List[str],
|
|
text_extraction_method:str,
|
|
in_allow_list:List[List[str]]=None,
|
|
custom_recogniser_word_list:List[str]=None,
|
|
redact_whole_page_list:List[str]=None,
|
|
latest_file_completed:int=0,
|
|
combined_out_message:List=[],
|
|
out_file_paths:List=[],
|
|
log_files_output_paths:List=[],
|
|
first_loop_state:bool=False,
|
|
page_min:int=0,
|
|
page_max:int=999,
|
|
estimated_time_taken_state:float=0.0,
|
|
handwrite_signature_checkbox:List[str]=["Extract handwriting", "Extract signatures"],
|
|
all_request_metadata_str:str = "",
|
|
annotations_all_pages:List[dict]=[],
|
|
all_line_level_ocr_results_df:pd.DataFrame=[],
|
|
all_pages_decision_process_table:pd.DataFrame=[],
|
|
pymupdf_doc=[],
|
|
current_loop_page:int=0,
|
|
page_break_return:bool=False,
|
|
pii_identification_method:str="Local",
|
|
comprehend_query_number:int=0,
|
|
max_fuzzy_spelling_mistakes_num:int=1,
|
|
match_fuzzy_whole_phrase_bool:bool=True,
|
|
aws_access_key_textbox:str='',
|
|
aws_secret_key_textbox:str='',
|
|
annotate_max_pages:int=1,
|
|
review_file_state:pd.DataFrame=[],
|
|
output_folder:str=OUTPUT_FOLDER,
|
|
document_cropboxes:List=[],
|
|
page_sizes:List[dict]=[],
|
|
textract_output_found:bool=False,
|
|
text_extraction_only:bool=False,
|
|
duplication_file_path_outputs:list=[],
|
|
review_file_path:str="",
|
|
input_folder:str=INPUT_FOLDER,
|
|
total_textract_query_number:int=0,
|
|
ocr_file_path:str="",
|
|
all_page_line_level_ocr_results = [],
|
|
all_page_line_level_ocr_results_with_words = [],
|
|
prepare_images:bool=True,
|
|
progress=gr.Progress(track_tqdm=True)):
|
|
'''
|
|
This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs:
|
|
|
|
- file_paths (List[str]): A list of paths to the files to be redacted.
|
|
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction.
|
|
- pdf_image_file_paths (List[str]): A list of paths to the PDF files converted to images for redaction.
|
|
- language (str): The language of the text in the files.
|
|
- chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio.
|
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
|
|
- text_extraction_method (str): The method to use to extract text from documents.
|
|
- in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
|
|
- custom_recogniser_word_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
|
|
- redact_whole_page_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
|
|
- latest_file_completed (int, optional): The index of the last completed file. Defaults to 0.
|
|
- combined_out_message (list, optional): A list to store output messages. Defaults to an empty list.
|
|
- out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list.
|
|
- log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list.
|
|
- first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False.
|
|
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
|
|
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
|
|
- estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0.
|
|
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].
|
|
- all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string.
|
|
- annotations_all_pages (List[dict], optional): A list of dictionaries containing all image annotations. Defaults to an empty list.
|
|
- all_line_level_ocr_results_df (pd.DataFrame, optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame.
|
|
- all_pages_decision_process_table (pd.DataFrame, optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame.
|
|
- pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list.
|
|
- current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0.
|
|
- page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False.
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.
|
|
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.
|
|
- annotate_max_pages (int, optional): Maximum page value for the annotation object.
|
|
- review_file_state (pd.DataFrame, optional): Output review file dataframe.
|
|
- output_folder (str, optional): Output folder for results.
|
|
- document_cropboxes (List, optional): List of document cropboxes for the PDF.
|
|
- page_sizes (List[dict], optional): List of dictionaries of PDF page sizes in PDF or image format.
|
|
- textract_output_found (bool, optional): Boolean is true when a textract OCR output for the file has been found.
|
|
- text_extraction_only (bool, optional): Boolean to determine if function should only extract text from the document, and not redact.
|
|
- duplication_file_outputs (list, optional): List to allow for export to the duplication function page.
|
|
- review_file_path (str, optional): The latest review file path created by the app
|
|
- input_folder (str, optional): The custom input path, if provided
|
|
- total_textract_query_number (int, optional): The number of textract queries up until this point.
|
|
- ocr_file_path (str, optional): The latest ocr file path created by the app.
|
|
- all_page_line_level_ocr_results (list, optional): All line level text on the page with bounding boxes.
|
|
- all_page_line_level_ocr_results_with_words (list, optional): All word level text on the page with bounding boxes.
|
|
- prepare_images (bool, optional): Boolean to determine whether to load images for the PDF.
|
|
- progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
|
|
|
|
The function returns a redacted document along with processing logs.
|
|
'''
|
|
tic = time.perf_counter()
|
|
|
|
out_message = ""
|
|
pdf_file_name_with_ext = ""
|
|
pdf_file_name_without_ext = ""
|
|
blank_request_metadata = []
|
|
all_textract_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else []
|
|
review_out_file_paths = [prepared_pdf_file_paths[0]]
|
|
|
|
|
|
if isinstance(all_pages_decision_process_table,list):
|
|
if not all_pages_decision_process_table: all_pages_decision_process_table = pd.DataFrame(columns=["image_path", "page", "label", "xmin", "xmax", "ymin", "ymax", "boundingBox", "text", "start","end","score", "id"])
|
|
elif isinstance(all_pages_decision_process_table, pd.DataFrame):
|
|
if all_pages_decision_process_table.empty:
|
|
all_pages_decision_process_table = pd.DataFrame(columns=["image_path", "page", "label", "xmin", "xmax", "ymin", "ymax", "boundingBox", "text", "start","end","score", "id"])
|
|
|
|
|
|
if first_loop_state==True:
|
|
|
|
latest_file_completed = 0
|
|
current_loop_page = 0
|
|
out_file_paths = []
|
|
estimate_total_processing_time = 0
|
|
estimated_time_taken_state = 0
|
|
comprehend_query_number = 0
|
|
total_textract_query_number = 0
|
|
elif current_loop_page == 0:
|
|
comprehend_query_number = 0
|
|
total_textract_query_number = 0
|
|
|
|
elif (first_loop_state == False) & (current_loop_page == 999):
|
|
current_loop_page = 0
|
|
total_textract_query_number = 0
|
|
comprehend_query_number = 0
|
|
|
|
|
|
if isinstance(file_paths, str): file_paths_list = [os.path.abspath(file_paths)]
|
|
elif isinstance(file_paths, dict):
|
|
file_paths = file_paths["name"]
|
|
file_paths_list = [os.path.abspath(file_paths)]
|
|
else: file_paths_list = file_paths
|
|
|
|
valid_extensions = {".pdf", ".jpg", ".jpeg", ".png"}
|
|
|
|
|
|
filtered_files = [file for file in file_paths_list if os.path.splitext(file)[1].lower() in valid_extensions]
|
|
|
|
|
|
file_paths_list = filtered_files if filtered_files else []
|
|
|
|
|
|
if not isinstance(file_paths, (str, dict)): file_paths_loop = [file_paths_list[int(latest_file_completed)]] if len(file_paths_list) > latest_file_completed else []
|
|
else: file_paths_loop = file_paths_list
|
|
|
|
latest_file_completed = int(latest_file_completed)
|
|
|
|
if isinstance(file_paths,str): number_of_files = 1
|
|
else: number_of_files = len(file_paths_list)
|
|
|
|
|
|
if latest_file_completed >= number_of_files:
|
|
|
|
print("Completed last file")
|
|
progress(0.95, "Completed last file, performing final checks")
|
|
current_loop_page = 0
|
|
|
|
if isinstance(out_message, list) and out_message:
|
|
combined_out_message = combined_out_message + '\n'.join(out_message)
|
|
elif out_message:
|
|
combined_out_message = combined_out_message + '\n' + out_message
|
|
|
|
combined_out_message = re.sub(r'^\n+', '', combined_out_message).strip()
|
|
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
|
|
if len(review_out_file_paths) == 1:
|
|
|
|
if review_file_path: review_out_file_paths.append(review_file_path)
|
|
|
|
if not isinstance(pymupdf_doc, list):
|
|
number_of_pages = pymupdf_doc.page_count
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
|
|
print("Estimated total processing time:", str(estimate_total_processing_time))
|
|
|
|
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_pages_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, pdf_image_file_paths, review_file_state, page_sizes, duplication_file_path_outputs, duplication_file_path_outputs, review_file_path, total_textract_query_number, ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
|
|
|
|
prepare_images_flag = None
|
|
|
|
if textract_output_found and text_extraction_method == textract_option:
|
|
print("Existing Textract outputs found, not preparing images or documents.")
|
|
prepare_images_flag = False
|
|
|
|
|
|
elif text_extraction_method == text_ocr_option:
|
|
print("Running text extraction analysis, not preparing images.")
|
|
prepare_images_flag = False
|
|
|
|
elif prepare_images and not pdf_image_file_paths:
|
|
print("Prepared PDF images not found, loading from file")
|
|
prepare_images_flag = True
|
|
|
|
elif not prepare_images:
|
|
print("Not loading images for file")
|
|
prepare_images_flag = False
|
|
|
|
else:
|
|
print("Loading images for file")
|
|
prepare_images_flag = True
|
|
|
|
|
|
|
|
if prepare_images_flag is not None:
|
|
out_message, prepared_pdf_file_paths, pdf_image_file_paths, annotate_max_pages, annotate_max_pages_bottom, pymupdf_doc, annotations_all_pages, review_file_state, document_cropboxes, page_sizes, textract_output_found, all_img_details_state, placeholder_ocr_results_df, local_ocr_output_found_checkbox = prepare_image_or_pdf(
|
|
file_paths_loop, text_extraction_method, 0, out_message, True,
|
|
annotate_max_pages, annotations_all_pages, document_cropboxes, redact_whole_page_list,
|
|
output_folder, prepare_images=prepare_images_flag, page_sizes=page_sizes, input_folder=input_folder
|
|
)
|
|
|
|
page_sizes_df = pd.DataFrame(page_sizes)
|
|
|
|
if page_sizes_df.empty:
|
|
page_sizes_df=pd.DataFrame(columns=["page", "image_path", "image_width", "image_height", "mediabox_width", "mediabox_height", "cropbox_width", "cropbox_height", "original_cropbox"])
|
|
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce")
|
|
|
|
page_sizes = page_sizes_df.to_dict(orient="records")
|
|
|
|
number_of_pages = pymupdf_doc.page_count
|
|
|
|
|
|
|
|
if current_loop_page >= number_of_pages:
|
|
print("Reached last page of document:", current_loop_page)
|
|
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
|
|
current_loop_page = 999
|
|
if out_message:
|
|
combined_out_message = combined_out_message + "\n" + out_message
|
|
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
|
|
if len(review_out_file_paths) == 1:
|
|
|
|
if review_file_path: review_out_file_paths.append(review_file_path)
|
|
|
|
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = False, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_pages_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, pdf_image_file_paths, review_file_state, page_sizes, duplication_file_path_outputs, duplication_file_path_outputs, review_file_path, total_textract_query_number, ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
|
|
|
|
if isinstance(in_allow_list, str): in_allow_list = pd.read_csv(in_allow_list)
|
|
|
|
if not in_allow_list.empty:
|
|
in_allow_list_flat = in_allow_list.iloc[:,0].tolist()
|
|
else:
|
|
in_allow_list_flat = []
|
|
|
|
|
|
if isinstance(custom_recogniser_word_list, str):
|
|
custom_recogniser_word_list = pd.read_csv(custom_recogniser_word_list)
|
|
if isinstance(custom_recogniser_word_list, pd.DataFrame):
|
|
if not custom_recogniser_word_list.empty:
|
|
custom_recogniser_word_list_flat = custom_recogniser_word_list.iloc[:, 0].tolist()
|
|
else:
|
|
custom_recogniser_word_list_flat = []
|
|
|
|
|
|
custom_recogniser_word_list_flat = sorted(custom_recogniser_word_list_flat, key=len, reverse=True)
|
|
|
|
|
|
if isinstance(redact_whole_page_list, str):
|
|
redact_whole_page_list = pd.read_csv(redact_whole_page_list)
|
|
if isinstance(redact_whole_page_list, pd.DataFrame):
|
|
if not redact_whole_page_list.empty:
|
|
try:
|
|
redact_whole_page_list_flat = redact_whole_page_list.iloc[:,0].astype(int).tolist()
|
|
except Exception as e:
|
|
print("Could not convert whole page redaction data to number list due to:", e)
|
|
redact_whole_page_list_flat = redact_whole_page_list.iloc[:,0].tolist()
|
|
else:
|
|
redact_whole_page_list_flat = []
|
|
|
|
|
|
|
|
|
|
if pii_identification_method == aws_pii_detector:
|
|
if aws_access_key_textbox and aws_secret_key_textbox:
|
|
print("Connecting to Comprehend using AWS access key and secret keys from user input.")
|
|
comprehend_client = boto3.client('comprehend',
|
|
aws_access_key_id=aws_access_key_textbox,
|
|
aws_secret_access_key=aws_secret_key_textbox, region_name=AWS_REGION)
|
|
elif RUN_AWS_FUNCTIONS == "1":
|
|
print("Connecting to Comprehend via existing SSO connection")
|
|
comprehend_client = boto3.client('comprehend', region_name=AWS_REGION)
|
|
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
|
print("Getting Comprehend credentials from environment variables")
|
|
comprehend_client = boto3.client('comprehend',
|
|
aws_access_key_id=AWS_ACCESS_KEY,
|
|
aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION)
|
|
else:
|
|
comprehend_client = ""
|
|
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
else:
|
|
comprehend_client = ""
|
|
|
|
|
|
if text_extraction_method == textract_option:
|
|
if aws_access_key_textbox and aws_secret_key_textbox:
|
|
print("Connecting to Textract using AWS access key and secret keys from user input.")
|
|
textract_client = boto3.client('textract',
|
|
aws_access_key_id=aws_access_key_textbox,
|
|
aws_secret_access_key=aws_secret_key_textbox, region_name=AWS_REGION)
|
|
elif RUN_AWS_FUNCTIONS == "1":
|
|
print("Connecting to Textract via existing SSO connection")
|
|
textract_client = boto3.client('textract', region_name=AWS_REGION)
|
|
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
|
print("Getting Textract credentials from environment variables.")
|
|
textract_client = boto3.client('textract',
|
|
aws_access_key_id=AWS_ACCESS_KEY,
|
|
aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION)
|
|
elif textract_output_found==True:
|
|
print("Existing Textract data found for file, no need to connect to AWS Textract")
|
|
textract_client = boto3.client('textract', region_name=AWS_REGION)
|
|
else:
|
|
textract_client = ""
|
|
out_message = "Cannot connect to AWS Textract service."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
else:
|
|
textract_client = ""
|
|
|
|
|
|
if not os.path.exists(output_folder): os.makedirs(output_folder)
|
|
|
|
progress(0.5, desc="Extracting text and redacting document")
|
|
|
|
all_pages_decision_process_table = pd.DataFrame(columns=["image_path", "page", "label", "xmin", "xmax", "ymin", "ymax", "boundingBox", "text", "start","end","score", "id"])
|
|
all_line_level_ocr_results_df = pd.DataFrame()
|
|
|
|
|
|
for file in file_paths_loop:
|
|
|
|
|
|
if isinstance(file, str): file_path = file
|
|
else: file_path = file.name
|
|
|
|
if file_path:
|
|
pdf_file_name_without_ext = get_file_name_without_type(file_path)
|
|
pdf_file_name_with_ext = os.path.basename(file_path)
|
|
|
|
is_a_pdf = is_pdf(file_path) == True
|
|
if is_a_pdf == False and text_extraction_method == text_ocr_option:
|
|
|
|
print("File is not a PDF, assuming that image analysis needs to be used.")
|
|
text_extraction_method = tesseract_ocr_option
|
|
else:
|
|
out_message = "No file selected"
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
|
|
orig_pdf_file_path = output_folder + pdf_file_name_with_ext
|
|
review_file_path = orig_pdf_file_path + '_review_file.csv'
|
|
|
|
|
|
if text_extraction_method == tesseract_ocr_option or text_extraction_method == textract_option:
|
|
|
|
|
|
if is_pdf_or_image(file_path) == False:
|
|
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
|
|
raise Exception(out_message)
|
|
|
|
print("Redacting file " + pdf_file_name_with_ext + " as an image-based file")
|
|
|
|
pymupdf_doc, all_pages_decision_process_table, out_file_paths, new_textract_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words = redact_image_pdf(file_path,
|
|
pdf_image_file_paths,
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
in_allow_list_flat,
|
|
page_min,
|
|
page_max,
|
|
text_extraction_method,
|
|
handwrite_signature_checkbox,
|
|
blank_request_metadata,
|
|
current_loop_page,
|
|
page_break_return,
|
|
annotations_all_pages,
|
|
all_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
pymupdf_doc,
|
|
pii_identification_method,
|
|
comprehend_query_number,
|
|
comprehend_client,
|
|
textract_client,
|
|
custom_recogniser_word_list_flat,
|
|
redact_whole_page_list_flat,
|
|
max_fuzzy_spelling_mistakes_num,
|
|
match_fuzzy_whole_phrase_bool,
|
|
page_sizes_df,
|
|
text_extraction_only,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
log_files_output_paths=log_files_output_paths,
|
|
output_folder=output_folder)
|
|
|
|
|
|
|
|
if new_textract_request_metadata and isinstance(new_textract_request_metadata, list):
|
|
all_textract_request_metadata.extend(new_textract_request_metadata)
|
|
|
|
|
|
elif text_extraction_method == text_ocr_option:
|
|
|
|
if is_pdf(file_path) == False:
|
|
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
|
|
raise Exception(out_message)
|
|
|
|
|
|
print('Redacting file as text-based PDF')
|
|
|
|
pymupdf_doc, all_pages_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number = redact_text_pdf(
|
|
file_path,
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
in_allow_list_flat,
|
|
page_min,
|
|
page_max,
|
|
current_loop_page,
|
|
page_break_return,
|
|
annotations_all_pages,
|
|
all_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
pymupdf_doc,
|
|
pii_identification_method,
|
|
comprehend_query_number,
|
|
comprehend_client,
|
|
custom_recogniser_word_list_flat,
|
|
redact_whole_page_list_flat,
|
|
max_fuzzy_spelling_mistakes_num,
|
|
match_fuzzy_whole_phrase_bool,
|
|
page_sizes_df,
|
|
document_cropboxes,
|
|
text_extraction_only)
|
|
else:
|
|
out_message = "No redaction method selected"
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
|
|
if current_loop_page >= number_of_pages:
|
|
|
|
print("Current page loop:", current_loop_page, "is the last page.")
|
|
latest_file_completed += 1
|
|
current_loop_page = 999
|
|
|
|
if latest_file_completed != len(file_paths_list):
|
|
print("Completed file number:", str(latest_file_completed), "there are more files to do")
|
|
|
|
progress(0.9, "Saving redacted PDF file")
|
|
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
if is_pdf(file_path) == False:
|
|
out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted.png"
|
|
|
|
if isinstance(pymupdf_doc[-1], str):
|
|
img = Image.open(pymupdf_doc[-1])
|
|
|
|
else:
|
|
img = pymupdf_doc[-1]
|
|
img.save(out_redacted_pdf_file_path, "PNG" ,resolution=image_dpi)
|
|
|
|
else:
|
|
out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted.pdf"
|
|
print("Saving redacted PDF file:", out_redacted_pdf_file_path)
|
|
pymupdf_doc.save(out_redacted_pdf_file_path, garbage=4, deflate=True, clean=True)
|
|
|
|
out_file_paths.append(out_redacted_pdf_file_path)
|
|
|
|
if not all_line_level_ocr_results_df.empty:
|
|
all_line_level_ocr_results_df = all_line_level_ocr_results_df[["page", "text", "left", "top", "width", "height"]]
|
|
else: all_line_level_ocr_results_df = pd.DataFrame(columns=["page", "text", "left", "top", "width", "height"])
|
|
|
|
ocr_file_path = orig_pdf_file_path + "_ocr_output.csv"
|
|
all_line_level_ocr_results_df.sort_values(["page", "top", "left"], inplace=True)
|
|
|
|
all_line_level_ocr_results_df.to_csv(ocr_file_path, index = None, encoding="utf-8")
|
|
out_file_paths.append(ocr_file_path)
|
|
|
|
duplication_file_path_outputs.append(ocr_file_path)
|
|
|
|
|
|
|
|
page_sizes = page_sizes_df.to_dict(orient="records")
|
|
all_image_annotations_df = convert_annotation_data_to_dataframe(annotations_all_pages)
|
|
|
|
all_image_annotations_df = divide_coordinates_by_page_sizes(all_image_annotations_df, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")
|
|
|
|
annotations_all_pages_divide = create_annotation_dicts_from_annotation_df(all_image_annotations_df, page_sizes)
|
|
annotations_all_pages_divide = remove_duplicate_images_with_blank_boxes(annotations_all_pages_divide)
|
|
|
|
|
|
review_file_state = convert_annotation_json_to_review_df(annotations_all_pages_divide, all_pages_decision_process_table, page_sizes=page_sizes)
|
|
|
|
|
|
review_file_state.drop(["image_width", "image_height", "mediabox_width", "mediabox_height", "cropbox_width", "cropbox_height"], axis=1, inplace=True, errors="ignore")
|
|
|
|
review_file_state.to_csv(review_file_path, index=None)
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
out_file_paths.append(review_file_path)
|
|
|
|
|
|
if isinstance(out_message, list) and out_message:
|
|
combined_out_message = combined_out_message + '\n'.join(out_message)
|
|
elif out_message:
|
|
combined_out_message = combined_out_message + '\n' + out_message
|
|
|
|
toc = time.perf_counter()
|
|
time_taken = toc - tic
|
|
estimated_time_taken_state += time_taken
|
|
|
|
out_time_message = f" Redacted in {estimated_time_taken_state:0.1f} seconds."
|
|
combined_out_message = combined_out_message + " " + out_time_message
|
|
|
|
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
|
|
|
|
else:
|
|
toc = time.perf_counter()
|
|
time_taken = toc - tic
|
|
estimated_time_taken_state += time_taken
|
|
|
|
|
|
if all_textract_request_metadata and isinstance(all_textract_request_metadata, list):
|
|
all_request_metadata_str = '\n'.join(all_textract_request_metadata).strip()
|
|
|
|
all_textract_request_metadata_file_path = output_folder + pdf_file_name_without_ext + "_textract_metadata.txt"
|
|
|
|
with open(all_textract_request_metadata_file_path, "w") as f:
|
|
f.write(all_request_metadata_str)
|
|
|
|
|
|
if all_textract_request_metadata_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(all_textract_request_metadata_file_path)
|
|
|
|
new_textract_query_numbers = len(all_textract_request_metadata)
|
|
total_textract_query_number += new_textract_query_numbers
|
|
|
|
|
|
log_files_output_paths = sorted(list(set(log_files_output_paths)))
|
|
out_file_paths = sorted(list(set(out_file_paths)))
|
|
|
|
|
|
if not review_file_path: review_out_file_paths = [prepared_pdf_file_paths[-1]]
|
|
else: review_out_file_paths = [prepared_pdf_file_paths[-1], review_file_path]
|
|
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages_divide, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_pages_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, pdf_image_file_paths, review_file_state, page_sizes, duplication_file_path_outputs, duplication_file_path_outputs, review_file_path, total_textract_query_number, ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
def convert_pikepdf_coords_to_pymupdf(pymupdf_page:Page, pikepdf_bbox, type="pikepdf_annot"):
|
|
'''
|
|
Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect.
|
|
'''
|
|
|
|
reference_box = pymupdf_page.rect
|
|
mediabox = pymupdf_page.mediabox
|
|
|
|
reference_box_height = reference_box.height
|
|
reference_box_width = reference_box.width
|
|
|
|
|
|
media_height = mediabox.height
|
|
media_width = mediabox.width
|
|
|
|
media_reference_y_diff = media_height - reference_box_height
|
|
media_reference_x_diff = media_width - reference_box_width
|
|
|
|
y_diff_ratio = media_reference_y_diff / reference_box_height
|
|
x_diff_ratio = media_reference_x_diff / reference_box_width
|
|
|
|
|
|
|
|
if type=="pikepdf_annot":
|
|
rect_field = pikepdf_bbox["/Rect"]
|
|
else:
|
|
rect_field = pikepdf_bbox
|
|
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
|
|
new_x1 = x1 - (media_reference_x_diff * x_diff_ratio)
|
|
new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio)
|
|
new_x2 = x2 - (media_reference_x_diff * x_diff_ratio)
|
|
new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio)
|
|
|
|
return new_x1, new_y1, new_x2, new_y2
|
|
|
|
def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image, type="pikepdf_annot"):
|
|
'''
|
|
Convert annotations from pikepdf coordinates to image coordinates.
|
|
'''
|
|
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = image_page_width / rect_width
|
|
scale_height = image_page_height / rect_height
|
|
|
|
|
|
if type=="pikepdf_annot":
|
|
rect_field = annot["/Rect"]
|
|
else:
|
|
rect_field = annot
|
|
|
|
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
x1_image = x1 * scale_width
|
|
new_y1_image = image_page_height - (y2 * scale_height)
|
|
x2_image = x2 * scale_width
|
|
new_y2_image = image_page_height - (y1 * scale_height)
|
|
|
|
return x1_image, new_y1_image, x2_image, new_y2_image
|
|
|
|
def convert_pikepdf_decision_output_to_image_coords(pymupdf_page:Document, pikepdf_decision_ouput_data:List[dict], image:Image):
|
|
if isinstance(image, str):
|
|
image_path = image
|
|
image = Image.open(image_path)
|
|
|
|
|
|
for item in pikepdf_decision_ouput_data:
|
|
|
|
bounding_box = item['boundingBox']
|
|
|
|
|
|
pikepdf_bbox = {"/Rect": bounding_box}
|
|
|
|
|
|
new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot")
|
|
|
|
|
|
item['boundingBox'] = [new_x1, new_y1, new_x2, new_y2]
|
|
|
|
return pikepdf_decision_ouput_data
|
|
|
|
def convert_image_coords_to_pymupdf(pymupdf_page:Document, annot:dict, image:Image, type:str="image_recognizer"):
|
|
'''
|
|
Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates.
|
|
'''
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = rect_width / image_page_width
|
|
scale_height = rect_height / image_page_height
|
|
|
|
|
|
if type == "image_recognizer":
|
|
x1 = (annot.left * scale_width)
|
|
new_y1 = (annot.top * scale_height)
|
|
x2 = ((annot.left + annot.width) * scale_width)
|
|
new_y2 = ((annot.top + annot.height) * scale_height)
|
|
|
|
else:
|
|
rect_field = annot["/Rect"]
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
|
|
x1 = (x1* scale_width)
|
|
new_y1 = ((y2 + (y1 - y2))* scale_height)
|
|
x2 = ((x1 + (x2 - x1)) * scale_width)
|
|
new_y2 = (y2 * scale_height)
|
|
|
|
|
|
return x1, new_y1, x2, new_y2
|
|
|
|
def convert_gradio_image_annotator_object_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image, image_dimensions:dict=None):
|
|
'''
|
|
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.
|
|
'''
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
if image_dimensions:
|
|
image_page_width = image_dimensions['image_width']
|
|
image_page_height = image_dimensions['image_height']
|
|
elif image:
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = rect_width / image_page_width
|
|
scale_height = rect_height / image_page_height
|
|
|
|
|
|
x1 = (annot["xmin"] * scale_width)
|
|
new_y1 = (annot["ymin"] * scale_height)
|
|
x2 = ((annot["xmax"]) * scale_width)
|
|
new_y2 = ((annot["ymax"]) * scale_height)
|
|
|
|
return x1, new_y1, x2, new_y2
|
|
|
|
def move_page_info(file_path: str) -> str:
|
|
|
|
base, extension = file_path.rsplit('.pdf', 1)
|
|
|
|
|
|
page_info = base.split('page ')[1].split(' of')[0]
|
|
new_base = base.replace(f'page {page_info} of ', '')
|
|
|
|
|
|
new_file_path = f"{new_base}_page_{page_info}.png"
|
|
|
|
return new_file_path
|
|
|
|
def prepare_custom_image_recogniser_result_annotation_box(page:Page, annot:dict, image:Image, page_sizes_df:pd.DataFrame):
|
|
'''
|
|
Prepare an image annotation box and coordinates based on a CustomImageRecogniserResult, PyMuPDF page, and PIL Image.
|
|
'''
|
|
|
|
img_annotation_box = {}
|
|
|
|
|
|
if 'page' in page_sizes_df.columns:
|
|
page_sizes_df = page_sizes_df.set_index('page')
|
|
|
|
page_num_one_based = page.number + 1
|
|
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = 0, 0, 0, 0
|
|
|
|
|
|
if image:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image)
|
|
|
|
else:
|
|
|
|
|
|
try:
|
|
|
|
page_info = page_sizes_df.loc[page_num_one_based]
|
|
mb_width = page_info['mediabox_width']
|
|
mb_height = page_info['mediabox_height']
|
|
x_offset = page_info['cropbox_x_offset']
|
|
y_offset = page_info['cropbox_y_offset_from_top']
|
|
|
|
|
|
|
|
if mb_width <= 0 or mb_height <= 0:
|
|
print(f"Warning: Invalid MediaBox dimensions ({mb_width}x{mb_height}) for page {page_num_one_based}. Setting coords to 0.")
|
|
else:
|
|
pymupdf_x1 = annot.left - x_offset
|
|
pymupdf_x2 = annot.left + annot.width - x_offset
|
|
pymupdf_y1 = annot.top - y_offset
|
|
pymupdf_y2 = annot.top + annot.height - y_offset
|
|
|
|
except KeyError:
|
|
print(f"Warning: Page number {page_num_one_based} not found in page_sizes_df. Cannot get MediaBox dimensions. Setting coords to 0.")
|
|
except AttributeError as e:
|
|
print(f"Error accessing attributes ('left', 'top', etc.) on 'annot' object for page {page_num_one_based}: {e}")
|
|
except Exception as e:
|
|
print(f"Error during coordinate calculation for page {page_num_one_based}: {e}")
|
|
|
|
rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2)
|
|
|
|
|
|
image_x1 = annot.left
|
|
image_x2 = annot.left + annot.width
|
|
image_y1 = annot.top
|
|
image_y2 = annot.top + annot.height
|
|
|
|
|
|
img_annotation_box["xmin"] = image_x1
|
|
img_annotation_box["ymin"] = image_y1
|
|
img_annotation_box["xmax"] = image_x2
|
|
img_annotation_box["ymax"] = image_y2
|
|
img_annotation_box["color"] = (0,0,0)
|
|
try:
|
|
img_annotation_box["label"] = str(annot.entity_type)
|
|
except:
|
|
img_annotation_box["label"] = "Redaction"
|
|
|
|
if hasattr(annot, 'text') and annot.text:
|
|
img_annotation_box["text"] = str(annot.text)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
|
|
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
return img_annotation_box, rect
|
|
|
|
|
|
def convert_pikepdf_annotations_to_result_annotation_box(page:Page, annot:dict, image:Image=None, convert_pikepdf_to_pymupdf_coords:bool=True, page_sizes_df:pd.DataFrame=pd.DataFrame(), image_dimensions:dict={}):
|
|
'''
|
|
Convert redaction objects with pikepdf coordinates to annotation boxes for PyMuPDF that can then be redacted from the document. First 1. converts pikepdf to pymupdf coordinates, then 2. converts pymupdf coordinates to image coordinates if page is an image.
|
|
'''
|
|
img_annotation_box = {}
|
|
page_no = page.number
|
|
|
|
if convert_pikepdf_to_pymupdf_coords == True:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_pikepdf_coords_to_pymupdf(page, annot)
|
|
else:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image, type="pikepdf_image_coords")
|
|
|
|
rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2)
|
|
|
|
convert_df = pd.DataFrame({
|
|
"page": [page_no],
|
|
"xmin": [pymupdf_x1],
|
|
"ymin": [pymupdf_y1],
|
|
"xmax": [pymupdf_x2],
|
|
"ymax": [pymupdf_y2]
|
|
})
|
|
|
|
converted_df = convert_df
|
|
|
|
img_annotation_box["xmin"] = converted_df["xmin"].max()
|
|
img_annotation_box["ymin"] = converted_df["ymin"].max()
|
|
img_annotation_box["xmax"] = converted_df["xmax"].max()
|
|
img_annotation_box["ymax"] = converted_df["ymax"].max()
|
|
|
|
img_annotation_box["color"] = (0, 0, 0)
|
|
|
|
if isinstance(annot, Dictionary):
|
|
img_annotation_box["label"] = str(annot["/T"])
|
|
|
|
if hasattr(annot, 'Contents'):
|
|
img_annotation_box["text"] = str(annot.Contents)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
else:
|
|
img_annotation_box["label"] = "REDACTION"
|
|
img_annotation_box["text"] = ""
|
|
|
|
return img_annotation_box, rect
|
|
|
|
def redact_page_with_pymupdf(page:Page, page_annotations:dict, image:Image=None, custom_colours:bool=False, redact_whole_page:bool=False, convert_pikepdf_to_pymupdf_coords:bool=True, original_cropbox:List[Rect]=[], page_sizes_df:pd.DataFrame=pd.DataFrame()):
|
|
|
|
rect_height = page.rect.height
|
|
rect_width = page.rect.width
|
|
|
|
mediabox_height = page.mediabox.height
|
|
mediabox_width = page.mediabox.width
|
|
|
|
page_no = page.number
|
|
page_num_reported = page_no + 1
|
|
|
|
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce")
|
|
|
|
|
|
image_dimensions = {}
|
|
|
|
if not image and 'image_width' in page_sizes_df.columns:
|
|
page_sizes_df[['image_width']] = page_sizes_df[['image_width']].apply(pd.to_numeric, errors="coerce")
|
|
page_sizes_df[['image_height']] = page_sizes_df[['image_height']].apply(pd.to_numeric, errors="coerce")
|
|
|
|
image_dimensions['image_width'] = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"].max()
|
|
image_dimensions['image_height'] = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_height"].max()
|
|
|
|
if pd.isna(image_dimensions['image_width']):
|
|
image_dimensions = {}
|
|
|
|
out_annotation_boxes = {}
|
|
all_image_annotation_boxes = []
|
|
|
|
if isinstance(image, Image.Image):
|
|
image_path = move_page_info(str(page))
|
|
image.save(image_path)
|
|
elif isinstance(image, str):
|
|
if os.path.exists(image):
|
|
image_path = image
|
|
image = Image.open(image_path)
|
|
elif 'image_path' in page_sizes_df.columns:
|
|
try:
|
|
image_path = page_sizes_df.loc[page_sizes_df["page"]==(page_no+1), "image_path"].iloc[0]
|
|
except IndexError:
|
|
image_path = ""
|
|
image=None
|
|
else:
|
|
image_path = ""
|
|
image=None
|
|
else:
|
|
|
|
image_path = ""
|
|
image=None
|
|
|
|
|
|
if isinstance (page_annotations, dict):
|
|
page_annotations = page_annotations["boxes"]
|
|
|
|
for annot in page_annotations:
|
|
|
|
|
|
|
|
|
|
|
|
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):
|
|
|
|
img_annotation_box = {}
|
|
|
|
|
|
if isinstance(annot, dict):
|
|
annot = fill_missing_box_ids(annot)
|
|
img_annotation_box = annot
|
|
|
|
box_coordinates = (img_annotation_box['xmin'], img_annotation_box['ymin'], img_annotation_box['xmax'], img_annotation_box['ymax'])
|
|
|
|
|
|
are_coordinates_relative = all(coord <= 1 for coord in box_coordinates)
|
|
|
|
if are_coordinates_relative == True:
|
|
|
|
pymupdf_x1 = img_annotation_box['xmin'] * mediabox_width
|
|
pymupdf_y1 = img_annotation_box['ymin'] * mediabox_height
|
|
pymupdf_x2 = img_annotation_box['xmax'] * mediabox_width
|
|
pymupdf_y2 = img_annotation_box['ymax'] * mediabox_height
|
|
|
|
elif image_dimensions or image:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_gradio_image_annotator_object_coords_to_pymupdf(page, img_annotation_box, image, image_dimensions)
|
|
else:
|
|
print("Could not convert image annotator coordinates in redact_page_with_pymupdf")
|
|
print("img_annotation_box", img_annotation_box)
|
|
pymupdf_x1 = img_annotation_box['xmin']
|
|
pymupdf_y1 = img_annotation_box['ymin']
|
|
pymupdf_x2 = img_annotation_box['xmax']
|
|
pymupdf_y2 = img_annotation_box['ymax']
|
|
|
|
|
|
if hasattr(annot, 'text') and annot.text:
|
|
img_annotation_box["text"] = str(annot.text)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
|
|
rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2)
|
|
|
|
|
|
elif isinstance(annot, CustomImageRecognizerResult):
|
|
|
|
img_annotation_box, rect = prepare_custom_image_recogniser_result_annotation_box(page, annot, image, page_sizes_df)
|
|
|
|
|
|
else:
|
|
if not image: convert_pikepdf_to_pymupdf_coords = True
|
|
else: convert_pikepdf_to_pymupdf_coords = False
|
|
|
|
img_annotation_box, rect = convert_pikepdf_annotations_to_result_annotation_box(page, annot, image, convert_pikepdf_to_pymupdf_coords, page_sizes_df, image_dimensions=image_dimensions)
|
|
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
all_image_annotation_boxes.append(img_annotation_box)
|
|
|
|
|
|
redact_single_box(page, rect, img_annotation_box, custom_colours)
|
|
|
|
|
|
if redact_whole_page == True:
|
|
|
|
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5, image_dimensions=image_dimensions)
|
|
all_image_annotation_boxes.append(whole_page_img_annotation_box)
|
|
|
|
out_annotation_boxes = {
|
|
"image": image_path,
|
|
"boxes": all_image_annotation_boxes
|
|
}
|
|
|
|
page.apply_redactions(images=0, graphics=0)
|
|
page.set_cropbox(original_cropbox)
|
|
page.clean_contents()
|
|
|
|
return page, out_annotation_boxes
|
|
|
|
|
|
|
|
|
|
|
|
def merge_img_bboxes(bboxes, combined_results: Dict, page_signature_recogniser_results=[], page_handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Extract handwriting", "Extract signatures"], horizontal_threshold:int=50, vertical_threshold:int=12):
|
|
|
|
all_bboxes = []
|
|
merged_bboxes = []
|
|
grouped_bboxes = defaultdict(list)
|
|
|
|
|
|
original_bboxes = copy.deepcopy(bboxes)
|
|
|
|
|
|
if page_signature_recogniser_results or page_handwriting_recogniser_results:
|
|
if "Extract handwriting" in handwrite_signature_checkbox:
|
|
merged_bboxes.extend(copy.deepcopy(page_handwriting_recogniser_results))
|
|
|
|
if "Extract signatures" in handwrite_signature_checkbox:
|
|
merged_bboxes.extend(copy.deepcopy(page_signature_recogniser_results))
|
|
|
|
|
|
reconstructed_bboxes = []
|
|
for bbox in bboxes:
|
|
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
|
|
for line_text, line_info in combined_results.items():
|
|
line_box = line_info['bounding_box']
|
|
if bounding_boxes_overlap(bbox_box, line_box):
|
|
if bbox.text in line_text:
|
|
start_char = line_text.index(bbox.text)
|
|
end_char = start_char + len(bbox.text)
|
|
|
|
relevant_words = []
|
|
current_char = 0
|
|
for word in line_info['words']:
|
|
word_end = current_char + len(word['text'])
|
|
if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char):
|
|
relevant_words.append(word)
|
|
if word_end >= end_char:
|
|
break
|
|
current_char = word_end
|
|
if not word['text'].endswith(' '):
|
|
current_char += 1
|
|
|
|
if relevant_words:
|
|
left = min(word['bounding_box'][0] for word in relevant_words)
|
|
top = min(word['bounding_box'][1] for word in relevant_words)
|
|
right = max(word['bounding_box'][2] for word in relevant_words)
|
|
bottom = max(word['bounding_box'][3] for word in relevant_words)
|
|
|
|
combined_text = " ".join(word['text'] for word in relevant_words)
|
|
|
|
reconstructed_bbox = CustomImageRecognizerResult(
|
|
bbox.entity_type,
|
|
bbox.start,
|
|
bbox.end,
|
|
bbox.score,
|
|
left,
|
|
top,
|
|
right - left,
|
|
bottom - top,
|
|
combined_text
|
|
)
|
|
|
|
reconstructed_bboxes.append(reconstructed_bbox)
|
|
break
|
|
else:
|
|
reconstructed_bboxes.append(bbox)
|
|
|
|
|
|
for box in reconstructed_bboxes:
|
|
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
|
|
|
|
|
|
for _, group in grouped_bboxes.items():
|
|
group.sort(key=lambda box: box.left)
|
|
|
|
merged_box = group[0]
|
|
for next_box in group[1:]:
|
|
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
|
|
if next_box.text != merged_box.text:
|
|
new_text = merged_box.text + " " + next_box.text
|
|
else:
|
|
new_text = merged_box.text
|
|
|
|
if merged_box.entity_type != next_box.entity_type:
|
|
new_entity_type = merged_box.entity_type + " - " + next_box.entity_type
|
|
else:
|
|
new_entity_type = merged_box.entity_type
|
|
|
|
new_left = min(merged_box.left, next_box.left)
|
|
new_top = min(merged_box.top, next_box.top)
|
|
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
|
|
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
|
|
|
|
merged_box = CustomImageRecognizerResult(
|
|
new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text
|
|
)
|
|
else:
|
|
merged_bboxes.append(merged_box)
|
|
merged_box = next_box
|
|
|
|
merged_bboxes.append(merged_box)
|
|
|
|
all_bboxes.extend(original_bboxes)
|
|
all_bboxes.extend(merged_bboxes)
|
|
|
|
|
|
unique_bboxes = list({(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes}.values())
|
|
return unique_bboxes
|
|
|
|
def redact_image_pdf(file_path:str,
|
|
pdf_image_file_paths:List[str],
|
|
language:str,
|
|
chosen_redact_entities:List[str],
|
|
chosen_redact_comprehend_entities:List[str],
|
|
allow_list:List[str]=None,
|
|
page_min:int=0,
|
|
page_max:int=999,
|
|
text_extraction_method:str=tesseract_ocr_option,
|
|
handwrite_signature_checkbox:List[str]=["Extract handwriting", "Extract signatures"],
|
|
textract_request_metadata:list=[],
|
|
current_loop_page:int=0,
|
|
page_break_return:bool=False,
|
|
annotations_all_pages:List=[],
|
|
all_line_level_ocr_results_df:pd.DataFrame = pd.DataFrame(),
|
|
all_pages_decision_process_table:pd.DataFrame = pd.DataFrame(columns=["image_path", "page", "label", "xmin", "xmax", "ymin", "ymax", "boundingBox", "text", "start","end","score", "id"]),
|
|
pymupdf_doc:Document = [],
|
|
pii_identification_method:str="Local",
|
|
comprehend_query_number:int=0,
|
|
comprehend_client:str="",
|
|
textract_client:str="",
|
|
custom_recogniser_word_list:List[str]=[],
|
|
redact_whole_page_list:List[str]=[],
|
|
max_fuzzy_spelling_mistakes_num:int=1,
|
|
match_fuzzy_whole_phrase_bool:bool=True,
|
|
page_sizes_df:pd.DataFrame=pd.DataFrame(),
|
|
text_extraction_only:bool=False,
|
|
all_page_line_level_ocr_results = [],
|
|
all_page_line_level_ocr_results_with_words = [],
|
|
page_break_val:int=int(PAGE_BREAK_VALUE),
|
|
log_files_output_paths:List=[],
|
|
max_time:int=int(MAX_TIME_VALUE),
|
|
output_folder:str=OUTPUT_FOLDER,
|
|
progress=Progress(track_tqdm=True)):
|
|
|
|
'''
|
|
This function redacts sensitive information from a PDF document. It takes the following parameters:
|
|
|
|
- file_path (str): The path to the PDF file to be redacted.
|
|
- pdf_image_file_paths (List[str]): A list of paths to the PDF file pages converted to images.
|
|
- language (str): The language of the text in the PDF.
|
|
- chosen_redact_entities (List[str]): A list of entity types to redact from the PDF.
|
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service.
|
|
- allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None.
|
|
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
|
|
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
|
|
- text_extraction_method (str, optional): The type of analysis to perform on the PDF. Defaults to tesseract_ocr_option.
|
|
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].
|
|
- textract_request_metadata (list, optional): Metadata related to the redaction request. Defaults to an empty string.
|
|
- page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False.
|
|
- annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object.
|
|
- all_line_level_ocr_results_df (pd.DataFrame, optional): All line level OCR results for the document as a Pandas dataframe,
|
|
- all_pages_decision_process_table (pd.DataFrame, optional): All redaction decisions for document as a Pandas dataframe.
|
|
- pymupdf_doc (Document, optional): The document as a PyMupdf object.
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
|
|
- textract_client (optional): A connection to the AWS Textract service via the boto3 package.
|
|
- custom_recogniser_word_list (optional): A list of custom words that the user has chosen specifically to redact.
|
|
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format.
|
|
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.
|
|
- page_break_val (int, optional): The value at which to trigger a page break. Defaults to 3.
|
|
- log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results.
|
|
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
|
|
- output_folder (str, optional): The folder for file outputs.
|
|
- progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
|
|
|
|
The function returns a redacted PDF document along with processing output objects.
|
|
'''
|
|
|
|
tic = time.perf_counter()
|
|
|
|
file_name = get_file_name_without_type(file_path)
|
|
comprehend_query_number_new = 0
|
|
|
|
|
|
if custom_recogniser_word_list:
|
|
nlp_analyser.registry.remove_recognizer("CUSTOM")
|
|
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
|
|
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
|
|
|
|
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
|
|
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool)
|
|
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
|
|
|
|
image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
|
|
|
|
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
|
|
out_message = "Connection to AWS Comprehend service unsuccessful."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
if text_extraction_method == textract_option and textract_client == "":
|
|
out_message_warning = "Connection to AWS Textract service unsuccessful. Redaction will only continue if local AWS Textract results can be found."
|
|
print(out_message_warning)
|
|
|
|
|
|
number_of_pages = pymupdf_doc.page_count
|
|
print("Number of pages:", str(number_of_pages))
|
|
|
|
|
|
if page_max > number_of_pages or page_max == 0: page_max = number_of_pages
|
|
|
|
if page_min <= 0: page_min = 0
|
|
else: page_min = page_min - 1
|
|
|
|
print("Page range:", str(page_min + 1), "to", str(page_max))
|
|
|
|
|
|
if text_extraction_method == textract_option:
|
|
textract_json_file_path = output_folder + file_name + "_textract.json"
|
|
textract_data, is_missing, log_files_output_paths = load_and_convert_textract_json(textract_json_file_path, log_files_output_paths, page_sizes_df)
|
|
original_textract_data = textract_data.copy()
|
|
|
|
print("Successfully loaded in Textract analysis results from file")
|
|
|
|
|
|
if text_extraction_method == tesseract_ocr_option:
|
|
all_page_line_level_ocr_results_with_words_json_file_path = output_folder + file_name + "_ocr_results_with_words.json"
|
|
all_page_line_level_ocr_results_with_words, is_missing, log_files_output_paths = load_and_convert_ocr_results_with_words_json(all_page_line_level_ocr_results_with_words_json_file_path, log_files_output_paths, page_sizes_df)
|
|
original_all_page_line_level_ocr_results_with_words = all_page_line_level_ocr_results_with_words.copy()
|
|
|
|
print("Loaded in local OCR analysis results from file")
|
|
|
|
|
|
if current_loop_page == 0: page_loop_start = 0
|
|
else: page_loop_start = current_loop_page
|
|
|
|
progress_bar = tqdm(range(page_loop_start, number_of_pages), unit="pages remaining", desc="Redacting pages")
|
|
|
|
all_line_level_ocr_results_df_list = [all_line_level_ocr_results_df]
|
|
all_pages_decision_process_table_list = [all_pages_decision_process_table]
|
|
|
|
|
|
for page_no in progress_bar:
|
|
|
|
handwriting_or_signature_boxes = []
|
|
page_signature_recogniser_results = []
|
|
page_handwriting_recogniser_results = []
|
|
page_line_level_ocr_results_with_words = []
|
|
page_break_return = False
|
|
reported_page_number = str(page_no + 1)
|
|
|
|
|
|
try:
|
|
image_path = page_sizes_df.loc[page_sizes_df["page"] == (page_no + 1), "image_path"].iloc[0]
|
|
except Exception as e:
|
|
print("Could not find image_path in page_sizes_df due to:", e)
|
|
image_path = pdf_image_file_paths[page_no]
|
|
|
|
page_image_annotations = {"image": image_path, "boxes": []}
|
|
pymupdf_page = pymupdf_doc.load_page(page_no)
|
|
|
|
if page_no >= page_min and page_no < page_max:
|
|
|
|
if isinstance(image_path, str):
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
page_width, page_height = image.size
|
|
else:
|
|
|
|
image = None
|
|
page_width = pymupdf_page.mediabox.width
|
|
page_height = pymupdf_page.mediabox.height
|
|
elif not isinstance(image_path, Image.Image):
|
|
print(f"Unexpected image_path type: {type(image_path)}, using page mediabox coordinates as page sizes")
|
|
image = None
|
|
page_width = pymupdf_page.mediabox.width
|
|
page_height = pymupdf_page.mediabox.height
|
|
|
|
try:
|
|
if not page_sizes_df.empty:
|
|
original_cropbox = page_sizes_df.loc[page_sizes_df["page"]==(page_no+1), "original_cropbox"].iloc[0]
|
|
except IndexError:
|
|
print("Can't find original cropbox details for page, using current PyMuPDF page cropbox")
|
|
original_cropbox = pymupdf_page.cropbox.irect
|
|
|
|
|
|
if language == 'en': ocr_lang = 'eng'
|
|
else: ocr_lang = language
|
|
|
|
|
|
|
|
|
|
if text_extraction_method == tesseract_ocr_option:
|
|
|
|
if all_page_line_level_ocr_results_with_words:
|
|
|
|
|
|
matching_page = next(
|
|
(item for item in all_page_line_level_ocr_results_with_words if int(item.get('page', -1)) == int(reported_page_number)),
|
|
None
|
|
)
|
|
|
|
page_line_level_ocr_results_with_words = matching_page if matching_page else []
|
|
else: page_line_level_ocr_results_with_words = []
|
|
|
|
if page_line_level_ocr_results_with_words:
|
|
print("Found OCR results for page in existing OCR with words object")
|
|
page_line_level_ocr_results = recreate_page_line_level_ocr_results_with_page(page_line_level_ocr_results_with_words)
|
|
else:
|
|
page_word_level_ocr_results = image_analyser.perform_ocr(image_path)
|
|
|
|
page_line_level_ocr_results, page_line_level_ocr_results_with_words = combine_ocr_results(page_word_level_ocr_results, page=reported_page_number)
|
|
|
|
all_page_line_level_ocr_results_with_words.append(page_line_level_ocr_results_with_words)
|
|
|
|
|
|
if text_extraction_method == textract_option:
|
|
text_blocks = []
|
|
|
|
if not textract_data:
|
|
try:
|
|
|
|
image_buffer = io.BytesIO()
|
|
image.save(image_buffer, format='PNG')
|
|
pdf_page_as_bytes = image_buffer.getvalue()
|
|
|
|
text_blocks, new_textract_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
textract_data = {"pages":[text_blocks]}
|
|
except Exception as e:
|
|
print("Textract extraction for page", reported_page_number, "failed due to:", e)
|
|
textract_data = {"pages":[]}
|
|
new_textract_request_metadata = "Failed Textract API call"
|
|
|
|
textract_request_metadata.append(new_textract_request_metadata)
|
|
|
|
else:
|
|
|
|
page_exists = any(page['page_no'] == reported_page_number for page in textract_data.get("pages", []))
|
|
|
|
if not page_exists:
|
|
print(f"Page number {reported_page_number} not found in existing Textract data. Analysing.")
|
|
|
|
try:
|
|
|
|
image_buffer = io.BytesIO()
|
|
image.save(image_buffer, format='PNG')
|
|
pdf_page_as_bytes = image_buffer.getvalue()
|
|
|
|
text_blocks, new_textract_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)
|
|
|
|
|
|
if "pages" not in textract_data: textract_data["pages"] = []
|
|
|
|
|
|
textract_data["pages"].append(text_blocks)
|
|
|
|
except Exception as e:
|
|
out_message = "Textract extraction for page " + reported_page_number + " failed due to:" + str(e)
|
|
print(out_message)
|
|
text_blocks = []
|
|
new_textract_request_metadata = "Failed Textract API call"
|
|
|
|
|
|
if "pages" not in textract_data: textract_data["pages"] = []
|
|
|
|
raise Exception(out_message)
|
|
|
|
textract_request_metadata.append(new_textract_request_metadata)
|
|
|
|
else:
|
|
|
|
text_blocks = next(page['data'] for page in textract_data["pages"] if page['page_no'] == reported_page_number)
|
|
|
|
page_line_level_ocr_results, handwriting_or_signature_boxes, page_signature_recogniser_results, page_handwriting_recogniser_results, page_line_level_ocr_results_with_words = json_to_ocrresult(text_blocks, page_width, page_height, reported_page_number)
|
|
|
|
|
|
line_level_ocr_results_df = pd.DataFrame([{
|
|
'page': page_line_level_ocr_results['page'],
|
|
'text': result.text,
|
|
'left': result.left,
|
|
'top': result.top,
|
|
'width': result.width,
|
|
'height': result.height
|
|
} for result in page_line_level_ocr_results['results']])
|
|
|
|
all_line_level_ocr_results_df_list.append(line_level_ocr_results_df)
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
|
|
if chosen_redact_entities or chosen_redact_comprehend_entities:
|
|
|
|
page_redaction_bounding_boxes, comprehend_query_number_new = image_analyser.analyze_text(
|
|
page_line_level_ocr_results['results'],
|
|
page_line_level_ocr_results_with_words['results'],
|
|
chosen_redact_comprehend_entities = chosen_redact_comprehend_entities,
|
|
pii_identification_method = pii_identification_method,
|
|
comprehend_client=comprehend_client,
|
|
language=language,
|
|
entities=chosen_redact_entities,
|
|
allow_list=allow_list,
|
|
score_threshold=score_threshold
|
|
)
|
|
|
|
comprehend_query_number = comprehend_query_number + comprehend_query_number_new
|
|
|
|
else: page_redaction_bounding_boxes = []
|
|
|
|
|
|
page_merged_redaction_bboxes = merge_img_bboxes(page_redaction_bounding_boxes, page_line_level_ocr_results_with_words['results'], page_signature_recogniser_results, page_handwriting_recogniser_results, handwrite_signature_checkbox)
|
|
|
|
else: page_merged_redaction_bboxes = []
|
|
|
|
|
|
|
|
if is_pdf(file_path) == True:
|
|
if redact_whole_page_list:
|
|
int_reported_page_number = int(reported_page_number)
|
|
if int_reported_page_number in redact_whole_page_list: redact_whole_page = True
|
|
else: redact_whole_page = False
|
|
else: redact_whole_page = False
|
|
|
|
pymupdf_page, page_image_annotations = redact_page_with_pymupdf(pymupdf_page, page_merged_redaction_bboxes, image_path, redact_whole_page=redact_whole_page, original_cropbox=original_cropbox, page_sizes_df=page_sizes_df)
|
|
|
|
|
|
elif is_pdf(file_path) == False:
|
|
if isinstance(image_path, str):
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
elif isinstance(image_path, Image.Image):
|
|
image = image_path
|
|
else:
|
|
|
|
image = image_path
|
|
|
|
fill = (0, 0, 0)
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
all_image_annotations_boxes = []
|
|
|
|
for box in page_merged_redaction_bboxes:
|
|
|
|
try:
|
|
x0 = box.left
|
|
y0 = box.top
|
|
x1 = x0 + box.width
|
|
y1 = y0 + box.height
|
|
label = box.entity_type
|
|
text = box.text
|
|
except AttributeError as e:
|
|
print(f"Error accessing box attributes: {e}")
|
|
label = "Redaction"
|
|
|
|
|
|
if any(v is None for v in [x0, y0, x1, y1]):
|
|
print(f"Invalid coordinates for box: {box}")
|
|
continue
|
|
|
|
img_annotation_box = {
|
|
"xmin": x0,
|
|
"ymin": y0,
|
|
"xmax": x1,
|
|
"ymax": y1,
|
|
"label": label,
|
|
"color": (0, 0, 0),
|
|
"text": text
|
|
}
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
|
|
all_image_annotations_boxes.append(img_annotation_box)
|
|
|
|
|
|
try:
|
|
draw.rectangle([x0, y0, x1, y1], fill=fill)
|
|
except Exception as e:
|
|
print(f"Error drawing rectangle: {e}")
|
|
|
|
page_image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes}
|
|
|
|
print("page_image_annotations at box drawing:", page_image_annotations)
|
|
|
|
redacted_image = image.copy()
|
|
|
|
|
|
|
|
|
|
decision_process_table = pd.DataFrame([{
|
|
'text': result.text,
|
|
'xmin': result.left,
|
|
'ymin': result.top,
|
|
'xmax': result.left + result.width,
|
|
'ymax': result.top + result.height,
|
|
'label': result.entity_type,
|
|
'start': result.start,
|
|
'end': result.end,
|
|
'score': result.score,
|
|
'page': reported_page_number
|
|
} for result in page_merged_redaction_bboxes])
|
|
|
|
all_pages_decision_process_table_list.append(decision_process_table)
|
|
|
|
decision_process_table = fill_missing_ids(decision_process_table)
|
|
decision_process_table.to_csv(output_folder + "decision_process_table_with_ids.csv")
|
|
|
|
toc = time.perf_counter()
|
|
|
|
time_taken = toc - tic
|
|
|
|
|
|
if time_taken > max_time:
|
|
print("Processing for", max_time, "seconds, breaking loop.")
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
if is_pdf(file_path) == False:
|
|
pdf_image_file_paths.append(redacted_image)
|
|
pymupdf_doc = pdf_image_file_paths
|
|
|
|
|
|
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == page_image_annotations["image"]), None)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
|
|
if text_extraction_method == textract_option:
|
|
if original_textract_data != textract_data:
|
|
|
|
with open(textract_json_file_path, 'w') as json_file:
|
|
json.dump(textract_data, json_file, separators=(",", ":"))
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
if text_extraction_method == tesseract_ocr_option:
|
|
if original_all_page_line_level_ocr_results_with_words != all_page_line_level_ocr_results_with_words:
|
|
|
|
with open(all_page_line_level_ocr_results_with_words_json_file_path, 'w') as json_file:
|
|
json.dump(all_page_line_level_ocr_results_with_words, json_file, separators=(",", ":"))
|
|
|
|
if all_page_line_level_ocr_results_with_words_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(all_page_line_level_ocr_results_with_words_json_file_path)
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_df_list)
|
|
|
|
|
|
current_loop_page += 1
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, log_files_output_paths, textract_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
|
|
if is_pdf(file_path) == False:
|
|
pdf_image_file_paths.append(redacted_image)
|
|
pymupdf_doc = pdf_image_file_paths
|
|
|
|
|
|
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == page_image_annotations["image"]), None)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
current_loop_page += 1
|
|
|
|
|
|
if current_loop_page % page_break_val == 0:
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
if text_extraction_method == textract_option:
|
|
|
|
if original_textract_data != textract_data:
|
|
with open(textract_json_file_path, 'w') as json_file:
|
|
json.dump(textract_data, json_file, separators=(",", ":"))
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
if text_extraction_method == tesseract_ocr_option:
|
|
if original_all_page_line_level_ocr_results_with_words != all_page_line_level_ocr_results_with_words:
|
|
|
|
with open(all_page_line_level_ocr_results_with_words_json_file_path, 'w') as json_file:
|
|
json.dump(all_page_line_level_ocr_results_with_words, json_file, separators=(",", ":"))
|
|
|
|
if all_page_line_level_ocr_results_with_words_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(all_page_line_level_ocr_results_with_words_json_file_path)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_df_list)
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, log_files_output_paths, textract_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
if text_extraction_method == textract_option:
|
|
|
|
|
|
if original_textract_data != textract_data:
|
|
with open(textract_json_file_path, 'w') as json_file:
|
|
json.dump(textract_data, json_file, separators=(",", ":"))
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
if text_extraction_method == tesseract_ocr_option:
|
|
if original_all_page_line_level_ocr_results_with_words != all_page_line_level_ocr_results_with_words:
|
|
|
|
with open(all_page_line_level_ocr_results_with_words_json_file_path, 'w') as json_file:
|
|
json.dump(all_page_line_level_ocr_results_with_words, json_file, separators=(",", ":"))
|
|
|
|
if all_page_line_level_ocr_results_with_words_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(all_page_line_level_ocr_results_with_words_json_file_path)
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_df_list)
|
|
|
|
|
|
all_pages_decision_process_table = divide_coordinates_by_page_sizes(all_pages_decision_process_table, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")
|
|
|
|
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(all_line_level_ocr_results_df, page_sizes_df, xmin="left", xmax="width", ymin="top", ymax="height")
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, log_files_output_paths, textract_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_text_container_characters(text_container:LTTextContainer):
|
|
|
|
if isinstance(text_container, LTTextContainer):
|
|
characters = [char
|
|
for line in text_container
|
|
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
|
|
for char in line]
|
|
|
|
return characters
|
|
return []
|
|
|
|
def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]:
|
|
'''
|
|
Create an OCRResult object based on a list of pdfminer LTChar objects.
|
|
'''
|
|
|
|
line_level_results_out = []
|
|
line_level_characters_out = []
|
|
|
|
character_objects_out = []
|
|
|
|
|
|
|
|
full_text = ""
|
|
added_text = ""
|
|
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
|
|
word_bboxes = []
|
|
|
|
|
|
current_word = ""
|
|
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
|
|
|
|
for char in char_objects:
|
|
character_objects_out.append(char)
|
|
|
|
if not isinstance(char, LTAnno):
|
|
character_text = char.get_text()
|
|
|
|
|
|
if isinstance(char, LTAnno):
|
|
|
|
added_text = char.get_text()
|
|
|
|
|
|
|
|
|
|
|
|
full_text += added_text
|
|
|
|
if current_word:
|
|
word_bboxes.append((current_word, current_word_bbox))
|
|
current_word = ""
|
|
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
|
|
|
|
|
|
if '\n' in added_text:
|
|
|
|
|
|
if current_word:
|
|
word_bboxes.append((current_word, current_word_bbox))
|
|
|
|
line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2)))
|
|
line_level_characters_out.append(character_objects_out)
|
|
|
|
character_objects_out = []
|
|
full_text = ""
|
|
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
|
|
current_word = ""
|
|
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
added_text = char.get_text()
|
|
if re.search(r'[^\x00-\x7F]', added_text):
|
|
|
|
added_text = clean_unicode_text(added_text)
|
|
full_text += added_text
|
|
|
|
|
|
x0, y0, x1, y1 = char.bbox
|
|
overall_bbox[0] = min(overall_bbox[0], x0)
|
|
overall_bbox[1] = min(overall_bbox[1], y0)
|
|
overall_bbox[2] = max(overall_bbox[2], x1)
|
|
overall_bbox[3] = max(overall_bbox[3], y1)
|
|
|
|
|
|
|
|
current_word += added_text
|
|
|
|
|
|
current_word_bbox[0] = min(current_word_bbox[0], x0)
|
|
current_word_bbox[1] = min(current_word_bbox[1], y0)
|
|
current_word_bbox[2] = max(current_word_bbox[2], x1)
|
|
current_word_bbox[3] = max(current_word_bbox[3], y1)
|
|
|
|
|
|
if current_word:
|
|
word_bboxes.append((current_word, current_word_bbox))
|
|
|
|
if full_text:
|
|
if re.search(r'[^\x00-\x7F]', full_text):
|
|
|
|
|
|
full_text = clean_unicode_text(full_text)
|
|
full_text = full_text.strip()
|
|
|
|
|
|
line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2)))
|
|
|
|
|
|
|
|
return line_level_results_out, line_level_characters_out
|
|
|
|
def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num):
|
|
decision_process_table = pd.DataFrame()
|
|
|
|
if len(analyser_results) > 0:
|
|
|
|
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)
|
|
|
|
|
|
|
|
analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].apply(pd.Series)
|
|
|
|
|
|
|
|
|
|
analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
|
|
analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"]
|
|
analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1)
|
|
analysed_bounding_boxes_df_new['page'] = page_num + 1
|
|
|
|
decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)
|
|
|
|
return decision_process_table
|
|
|
|
def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes):
|
|
pikepdf_redaction_annotations_on_page = []
|
|
for analysed_bounding_box in analysed_bounding_boxes:
|
|
|
|
bounding_box = analysed_bounding_box["boundingBox"]
|
|
annotation = Dictionary(
|
|
Type=Name.Annot,
|
|
Subtype=Name.Square,
|
|
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
|
|
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
|
|
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
|
|
C=[0, 0, 0],
|
|
IC=[0, 0, 0],
|
|
CA=1,
|
|
T=analysed_bounding_box["result"].entity_type,
|
|
Contents=analysed_bounding_box["text"],
|
|
BS=Dictionary(
|
|
W=0,
|
|
S=Name.S
|
|
)
|
|
)
|
|
pikepdf_redaction_annotations_on_page.append(annotation)
|
|
return pikepdf_redaction_annotations_on_page
|
|
|
|
def redact_text_pdf(
|
|
filename: str,
|
|
language: str,
|
|
chosen_redact_entities: List[str],
|
|
chosen_redact_comprehend_entities: List[str],
|
|
allow_list: List[str] = None,
|
|
page_min: int = 0,
|
|
page_max: int = 999,
|
|
current_loop_page: int = 0,
|
|
page_break_return: bool = False,
|
|
annotations_all_pages: List[dict] = [],
|
|
all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(),
|
|
all_pages_decision_process_table:pd.DataFrame = pd.DataFrame(columns=["image_path", "page", "label", "xmin", "xmax", "ymin", "ymax", "text", "id"]),
|
|
pymupdf_doc: List = [],
|
|
pii_identification_method: str = "Local",
|
|
comprehend_query_number:int = 0,
|
|
comprehend_client="",
|
|
custom_recogniser_word_list:List[str]=[],
|
|
redact_whole_page_list:List[str]=[],
|
|
max_fuzzy_spelling_mistakes_num:int=1,
|
|
match_fuzzy_whole_phrase_bool:bool=True,
|
|
page_sizes_df:pd.DataFrame=pd.DataFrame(),
|
|
original_cropboxes:List[dict]=[],
|
|
text_extraction_only:bool=False,
|
|
page_break_val: int = int(PAGE_BREAK_VALUE),
|
|
max_time: int = int(MAX_TIME_VALUE),
|
|
progress: Progress = Progress(track_tqdm=True)
|
|
):
|
|
|
|
'''
|
|
Redact chosen entities from a PDF that is made up of multiple pages that are not images.
|
|
|
|
Input Variables:
|
|
- filename: Path to the PDF file to be redacted
|
|
- language: Language of the PDF content
|
|
- chosen_redact_entities: List of entities to be redacted
|
|
- chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend
|
|
- allow_list: Optional list of allowed entities
|
|
- page_min: Minimum page number to start redaction
|
|
- page_max: Maximum page number to end redaction
|
|
- text_extraction_method: Type of analysis to perform
|
|
- current_loop_page: Current page being processed in the loop
|
|
- page_break_return: Flag to indicate if a page break should be returned
|
|
- annotations_all_pages: List of annotations across all pages
|
|
- all_line_level_ocr_results_df: DataFrame for OCR results
|
|
- all_pages_decision_process_table: DataFrame for decision process table
|
|
- pymupdf_doc: List of PyMuPDF documents
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
|
|
- custom_recogniser_word_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact.
|
|
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe containing page size information.
|
|
- original_cropboxes (List[dict], optional): A list of dictionaries containing pymupdf cropbox information.
|
|
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.
|
|
- page_break_val: Value for page break
|
|
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
|
|
- progress: Progress tracking object
|
|
'''
|
|
|
|
tic = time.perf_counter()
|
|
|
|
if isinstance(all_line_level_ocr_results_df, pd.DataFrame):
|
|
all_line_level_ocr_results_df_list = [all_line_level_ocr_results_df]
|
|
|
|
if isinstance(all_pages_decision_process_table, pd.DataFrame):
|
|
|
|
all_pages_decision_process_table_list = [all_pages_decision_process_table]
|
|
|
|
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
|
|
out_message = "Connection to AWS Comprehend service not found."
|
|
raise Exception(out_message)
|
|
|
|
|
|
if custom_recogniser_word_list:
|
|
nlp_analyser.registry.remove_recognizer("CUSTOM")
|
|
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
|
|
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
|
|
|
|
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
|
|
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool)
|
|
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
|
|
|
|
|
|
pikepdf_pdf = Pdf.open(filename)
|
|
number_of_pages = len(pikepdf_pdf.pages)
|
|
|
|
|
|
if page_max > number_of_pages or page_max == 0:
|
|
page_max = number_of_pages
|
|
|
|
if page_min <= 0: page_min = 0
|
|
else: page_min = page_min - 1
|
|
|
|
print("Page range is",str(page_min + 1), "to", str(page_max))
|
|
|
|
|
|
progress_bar = tqdm(range(current_loop_page, number_of_pages), unit="pages remaining", desc="Redacting pages")
|
|
|
|
for page_no in progress_bar:
|
|
reported_page_number = str(page_no + 1)
|
|
|
|
|
|
|
|
try:
|
|
image_path = page_sizes_df.loc[page_sizes_df["page"] == int(reported_page_number), "image_path"].iloc[0]
|
|
except Exception as e:
|
|
print("Image path not found:", e)
|
|
image_path = ''
|
|
|
|
page_image_annotations = {"image": image_path, "boxes": []}
|
|
|
|
pymupdf_page = pymupdf_doc.load_page(page_no)
|
|
pymupdf_page.set_cropbox(pymupdf_page.mediabox)
|
|
|
|
if page_min <= page_no < page_max:
|
|
|
|
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
|
|
|
|
all_page_line_text_extraction_characters = []
|
|
all_page_line_level_text_extraction_results_list = []
|
|
page_analyser_results = []
|
|
page_redaction_bounding_boxes = []
|
|
|
|
characters = []
|
|
pikepdf_redaction_annotations_on_page = []
|
|
page_decision_process_table = pd.DataFrame()
|
|
page_text_ocr_outputs = pd.DataFrame()
|
|
|
|
for n, text_container in enumerate(page_layout):
|
|
characters = []
|
|
|
|
if isinstance(text_container, LTTextContainer) or isinstance(text_container, LTAnno):
|
|
characters = get_text_container_characters(text_container)
|
|
|
|
|
|
line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters)
|
|
|
|
|
|
if line_level_text_results_list:
|
|
|
|
line_level_text_results_df = pd.DataFrame([{
|
|
'page': page_no + 1,
|
|
'text': (result.text).strip(),
|
|
'left': result.left,
|
|
'top': result.top,
|
|
'width': result.width,
|
|
'height': result.height
|
|
} for result in line_level_text_results_list])
|
|
|
|
page_text_ocr_outputs = pd.concat([page_text_ocr_outputs, line_level_text_results_df])
|
|
|
|
all_page_line_level_text_extraction_results_list.extend(line_level_text_results_list)
|
|
all_page_line_text_extraction_characters.extend(line_characters)
|
|
|
|
|
|
if pii_identification_method != no_redaction_option:
|
|
|
|
if chosen_redact_entities or chosen_redact_comprehend_entities:
|
|
page_redaction_bounding_boxes = run_page_text_redaction(
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
all_page_line_level_text_extraction_results_list,
|
|
all_page_line_text_extraction_characters,
|
|
page_analyser_results,
|
|
page_redaction_bounding_boxes,
|
|
comprehend_client,
|
|
allow_list,
|
|
pii_identification_method,
|
|
nlp_analyser,
|
|
score_threshold,
|
|
custom_entities,
|
|
comprehend_query_number
|
|
)
|
|
|
|
|
|
pikepdf_redaction_annotations_on_page = create_pikepdf_annotations_for_bounding_boxes(page_redaction_bounding_boxes)
|
|
|
|
else: pikepdf_redaction_annotations_on_page = []
|
|
|
|
|
|
if redact_whole_page_list:
|
|
int_reported_page_number = int(reported_page_number)
|
|
if int_reported_page_number in redact_whole_page_list: redact_whole_page = True
|
|
else: redact_whole_page = False
|
|
else: redact_whole_page = False
|
|
|
|
pymupdf_page, page_image_annotations = redact_page_with_pymupdf(pymupdf_page, pikepdf_redaction_annotations_on_page, image_path, redact_whole_page=redact_whole_page, convert_pikepdf_to_pymupdf_coords=True, original_cropbox=original_cropboxes[page_no], page_sizes_df=page_sizes_df)
|
|
|
|
|
|
page_decision_process_table = create_text_redaction_process_results(page_analyser_results, page_redaction_bounding_boxes, current_loop_page)
|
|
|
|
if not page_decision_process_table.empty:
|
|
all_pages_decision_process_table_list.append(page_decision_process_table)
|
|
|
|
|
|
else:
|
|
pass
|
|
|
|
|
|
|
|
|
|
if not page_text_ocr_outputs.empty:
|
|
page_text_ocr_outputs = page_text_ocr_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True)
|
|
page_text_ocr_outputs = page_text_ocr_outputs.loc[:, ["page", "text", "left", "top", "width", "height"]]
|
|
all_line_level_ocr_results_df_list.append(page_text_ocr_outputs)
|
|
|
|
toc = time.perf_counter()
|
|
|
|
time_taken = toc - tic
|
|
|
|
|
|
if time_taken > max_time:
|
|
print("Processing for", max_time, "seconds, breaking.")
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
|
|
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == page_image_annotations["image"]), None)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_df_list)
|
|
|
|
|
|
current_loop_page += 1
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
|
|
|
|
|
|
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == page_image_annotations["image"]), None)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
current_loop_page += 1
|
|
|
|
|
|
if current_loop_page % page_break_val == 0:
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_table_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_df_list)
|
|
|
|
|
|
all_pages_decision_process_table = divide_coordinates_by_page_sizes(all_pages_decision_process_table, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")
|
|
|
|
|
|
all_pages_decision_process_table['ymin'] = 1 - all_pages_decision_process_table['ymin']
|
|
all_pages_decision_process_table['ymax'] = 1 - all_pages_decision_process_table['ymax']
|
|
|
|
|
|
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(all_line_level_ocr_results_df, page_sizes_df, xmin="left", xmax="width", ymin="top", ymax="height")
|
|
|
|
|
|
all_line_level_ocr_results_df['top'] = all_line_level_ocr_results_df['top'].astype(float)
|
|
all_line_level_ocr_results_df['top'] = 1 - all_line_level_ocr_results_df['top']
|
|
|
|
return pymupdf_doc, all_pages_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number |