Now local OCR outputs can be saved to file and reloaded to save preparation time. Bug fixing in logs and tabular data redaction. Update to documentation
f93e49c
import re | |
import os | |
import secrets | |
import base64 | |
import time | |
import boto3 | |
import botocore | |
import pandas as pd | |
from openpyxl import Workbook, load_workbook | |
from faker import Faker | |
from gradio import Progress | |
from typing import List, Dict, Any | |
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult | |
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine | |
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy | |
from tools.config import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY, OUTPUT_FOLDER | |
from tools.helper_functions import get_file_name_without_type, read_file, detect_file_type | |
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_word_list_recogniser, CustomWordFuzzyRecognizer, custom_entities | |
from tools.custom_image_analyser_engine import do_aws_comprehend_call | |
# Use custom version of analyze_dict to be able to track progress | |
from tools.presidio_analyzer_custom import analyze_dict | |
fake = Faker("en_UK") | |
def fake_first_name(x): | |
return fake.first_name() | |
def initial_clean(text): | |
#### Some of my cleaning functions | |
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| ' | |
html_start_pattern_end_dots_regex = r'<(.*?)\.\.' | |
non_ascii_pattern = r'[^\x00-\x7F]+' | |
multiple_spaces_regex = r'\s{2,}' | |
# Define a list of patterns and their replacements | |
patterns = [ | |
(html_pattern_regex, ' '), | |
(html_start_pattern_end_dots_regex, ' '), | |
(non_ascii_pattern, ' '), | |
(multiple_spaces_regex, ' ') | |
] | |
# Apply each regex replacement | |
for pattern, replacement in patterns: | |
text = re.sub(pattern, replacement, text) | |
return text | |
def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep): | |
output = [] | |
if hasattr(result, 'value'): | |
text = result.value[data_row] | |
else: | |
text = "" | |
if isinstance(recognizer_result, list): | |
for sub_result in recognizer_result: | |
if isinstance(text, str): | |
found_text = text[sub_result.start:sub_result.end] | |
else: | |
found_text = '' | |
analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep} | |
analysis_explanation.update({ | |
'data_row': str(data_row), | |
'column': list(df_dict.keys())[dictionary_key], | |
'entity': found_text | |
}) | |
output.append(str(analysis_explanation)) | |
return output | |
# Writing decision making process to file | |
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str: | |
""" | |
Generate a detailed output of the decision process for entity recognition. | |
This function takes the results from the analyzer and the original data dictionary, | |
and produces a string output detailing the decision process for each recognized entity. | |
It includes information such as entity type, position, confidence score, and the context | |
in which the entity was found. | |
Args: | |
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer. | |
df_dict (Dict[str, List[Any]]): The original data in dictionary format. | |
Returns: | |
str: A string containing the detailed decision process output. | |
""" | |
decision_process_output = [] | |
keys_to_keep = ['entity_type', 'start', 'end'] | |
# Run through each column to analyse for PII | |
for i, result in enumerate(analyzer_results): | |
# If a single result | |
if isinstance(result, RecognizerResult): | |
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) | |
# If a list of results | |
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult): | |
for x, recognizer_result in enumerate(result.recognizer_results): | |
decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep)) | |
else: | |
try: | |
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) | |
except Exception as e: | |
print(e) | |
decision_process_output_str = '\n'.join(decision_process_output) | |
return decision_process_output_str | |
def anon_consistent_names(df): | |
# ## Pick out common names and replace them with the same person value | |
df_dict = df.to_dict(orient="list") | |
analyzer = AnalyzerEngine() | |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer) | |
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en") | |
analyzer_results = list(analyzer_results) | |
# + tags=[] | |
text = analyzer_results[3].value | |
# + tags=[] | |
recognizer_result = str(analyzer_results[3].recognizer_results) | |
# + tags=[] | |
recognizer_result | |
# + tags=[] | |
data_str = recognizer_result # abbreviated for brevity | |
# Adjusting the parse_dict function to handle trailing ']' | |
# Splitting the main data string into individual list strings | |
list_strs = data_str[1:-1].split('], [') | |
def parse_dict(s): | |
s = s.strip('[]') # Removing any surrounding brackets | |
items = s.split(', ') | |
d = {} | |
for item in items: | |
key, value = item.split(': ') | |
if key == 'score': | |
d[key] = float(value) | |
elif key in ['start', 'end']: | |
d[key] = int(value) | |
else: | |
d[key] = value | |
return d | |
# Re-running the improved processing code | |
result = [] | |
for lst_str in list_strs: | |
# Splitting each list string into individual dictionary strings | |
dict_strs = lst_str.split(', type: ') | |
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings | |
# Parsing each dictionary string | |
dicts = [parse_dict(d) for d in dict_strs] | |
result.append(dicts) | |
#result | |
# + tags=[] | |
names = [] | |
for idx, paragraph in enumerate(text): | |
paragraph_texts = [] | |
for dictionary in result[idx]: | |
if dictionary['type'] == 'PERSON': | |
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']]) | |
names.append(paragraph_texts) | |
# + tags=[] | |
# Flatten the list of lists and extract unique names | |
unique_names = list(set(name for sublist in names for name in sublist)) | |
# + tags=[] | |
fake_names = pd.Series(unique_names).apply(fake_first_name) | |
# + tags=[] | |
mapping_df = pd.DataFrame(data={"Unique names":unique_names, | |
"Fake names": fake_names}) | |
# + tags=[] | |
# Convert mapping dataframe to dictionary | |
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match | |
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])} | |
# + tags=[] | |
name_map | |
# + tags=[] | |
scrubbed_df_consistent_names = df.replace(name_map, regex = True) | |
# + tags=[] | |
scrubbed_df_consistent_names | |
return scrubbed_df_consistent_names | |
def anonymise_data_files(file_paths: List[str], | |
in_text: str, | |
anon_strat: str, | |
chosen_cols: List[str], | |
language: str, | |
chosen_redact_entities: List[str], | |
in_allow_list: List[str] = None, | |
latest_file_completed: int = 0, | |
out_message: list = [], | |
out_file_paths: list = [], | |
log_files_output_paths: list = [], | |
in_excel_sheets: list = [], | |
first_loop_state: bool = False, | |
output_folder: str = OUTPUT_FOLDER, | |
in_deny_list:list[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=0, | |
pii_identification_method:str="Local", | |
chosen_redact_comprehend_entities:List[str]=[], | |
comprehend_query_number:int=0, | |
aws_access_key_textbox:str='', | |
aws_secret_key_textbox:str='', | |
actual_time_taken_number:float=0, | |
progress: Progress = Progress(track_tqdm=True)): | |
""" | |
This function anonymises data files based on the provided parameters. | |
Parameters: | |
- file_paths (List[str]): A list of file paths to anonymise. | |
- in_text (str): The text to anonymise if file_paths is 'open_text'. | |
- anon_strat (str): The anonymisation strategy to use. | |
- chosen_cols (List[str]): A list of column names to anonymise. | |
- language (str): The language of the text to anonymise. | |
- chosen_redact_entities (List[str]): A list of entities to redact. | |
- in_allow_list (List[str], optional): A list of allowed values. Defaults to None. | |
- latest_file_completed (int, optional): The index of the last file completed. Defaults to 0. | |
- out_message (list, optional): A list to store output messages. Defaults to an empty list. | |
- out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list. | |
- log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list. | |
- in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list. | |
- first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False. | |
- output_folder (str, optional): The output folder path. Defaults to the global output_folder variable. | |
- in_deny_list (list[str], optional): A list of specific terms to redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions. | |
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions. | |
- actual_time_taken_number (float, optional): Time taken to do the redaction. | |
- progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True. | |
""" | |
tic = time.perf_counter() | |
comprehend_client = "" | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
latest_file_completed = 0 | |
out_message = [] | |
out_file_paths = [] | |
# Load file | |
# If out message or out_file_paths are blank, change to a list so it can be appended to | |
if isinstance(out_message, str): | |
out_message = [out_message] | |
#print("log_files_output_paths:",log_files_output_paths) | |
if isinstance(log_files_output_paths, str): | |
log_files_output_paths = [] | |
if not out_file_paths: | |
out_file_paths = [] | |
if isinstance(in_allow_list, list): | |
if in_allow_list: | |
in_allow_list_flat = in_allow_list | |
else: | |
in_allow_list_flat = [] | |
elif isinstance(in_allow_list, pd.DataFrame): | |
if not in_allow_list.empty: | |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique()) | |
else: | |
in_allow_list_flat = [] | |
else: | |
in_allow_list_flat = [] | |
anon_df = pd.DataFrame() | |
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed. | |
if pii_identification_method == "AWS Comprehend": | |
print("Trying to connect to AWS Comprehend service") | |
if aws_access_key_textbox and aws_secret_key_textbox: | |
print("Connecting to Comprehend using AWS access key and secret keys from textboxes.") | |
print("aws_access_key_textbox:", aws_access_key_textbox) | |
print("aws_secret_access_key:", aws_secret_key_textbox) | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Comprehend via existing SSO connection") | |
comprehend_client = boto3.client('comprehend') | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Comprehend credentials from environment variables") | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY) | |
else: | |
comprehend_client = "" | |
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method." | |
raise(out_message) | |
# Check if files and text exist | |
if not file_paths: | |
if in_text: | |
file_paths=['open_text'] | |
else: | |
out_message = "Please enter text or a file to redact." | |
raise Exception(out_message) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= len(file_paths): | |
print("Last file reached") #, returning files:", str(latest_file_completed)) | |
# Set to a very high number so as not to mess with subsequent file processing by the user | |
latest_file_completed = 99 | |
final_out_message = '\n'.join(out_message) | |
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, actual_time_taken_number | |
file_path_loop = [file_paths[int(latest_file_completed)]] | |
for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "files"): | |
if anon_file=='open_text': | |
anon_df = pd.DataFrame(data={'text':[in_text]}) | |
chosen_cols=['text'] | |
out_file_part = anon_file | |
sheet_name = "" | |
file_type = "" | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=OUTPUT_FOLDER) | |
else: | |
# If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately. | |
file_type = detect_file_type(anon_file) | |
print("File type is:", file_type) | |
out_file_part = get_file_name_without_type(anon_file.name) | |
if file_type == 'xlsx': | |
print("Running through all xlsx sheets") | |
#anon_xlsx = pd.ExcelFile(anon_file) | |
if not in_excel_sheets: | |
out_message.append("No Excel sheets selected. Please select at least one to anonymise.") | |
continue | |
# Create xlsx file: | |
anon_xlsx = pd.ExcelFile(anon_file) | |
anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx" | |
# Iterate through the sheet names | |
for sheet_name in progress.tqdm(in_excel_sheets, desc="Anonymising sheets", unit = "sheets"): | |
# Read each sheet into a DataFrame | |
if sheet_name not in anon_xlsx.sheet_names: | |
continue | |
anon_df = pd.read_excel(anon_file, sheet_name=sheet_name) | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, anon_xlsx_export_file_name, log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) | |
else: | |
sheet_name = "" | |
anon_df = read_file(anon_file) | |
out_file_part = get_file_name_without_type(anon_file.name) | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) | |
# Increase latest file completed count unless we are at the last file | |
if latest_file_completed != len(file_paths): | |
print("Completed file number:", str(latest_file_completed)) | |
latest_file_completed += 1 | |
toc = time.perf_counter() | |
out_time_float = toc - tic | |
out_time = f"in {out_time_float:0.1f} seconds." | |
print(out_time) | |
actual_time_taken_number += out_time_float | |
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in") | |
out_message_out = '\n'.join(out_message) | |
out_message_out = out_message_out + " " + out_time | |
if anon_strat == "encrypt": | |
out_message_out.append(". Your decryption key is " + key_string) | |
out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app." | |
out_message_out = re.sub(r'^\n+|^\. ', '', out_message_out).strip() | |
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, actual_time_taken_number | |
def anon_wrapper_func( | |
anon_file: str, | |
anon_df: pd.DataFrame, | |
chosen_cols: List[str], | |
out_file_paths: List[str], | |
out_file_part: str, | |
out_message: str, | |
excel_sheet_name: str, | |
anon_strat: str, | |
language: str, | |
chosen_redact_entities: List[str], | |
in_allow_list: List[str], | |
file_type: str, | |
anon_xlsx_export_file_name: str, | |
log_files_output_paths: List[str], | |
in_deny_list: List[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=0, | |
pii_identification_method:str="Local", | |
chosen_redact_comprehend_entities:List[str]=[], | |
comprehend_query_number:int=0, | |
comprehend_client:botocore.client.BaseClient="", | |
output_folder: str = OUTPUT_FOLDER | |
): | |
""" | |
This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file. | |
Input Variables: | |
- anon_file: The path to the file containing the data to be anonymized. | |
- anon_df: The pandas DataFrame containing the data to be anonymized. | |
- chosen_cols: A list of column names to be anonymized. | |
- out_file_paths: A list of paths where the anonymized files will be saved. | |
- out_file_part: A part of the output file name. | |
- out_message: A message to be displayed during the anonymization process. | |
- excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported. | |
- anon_strat: The anonymization strategy to be applied. | |
- language: The language of the data to be anonymized. | |
- chosen_redact_entities: A list of entities to be redacted. | |
- in_allow_list: A list of allowed values. | |
- file_type: The type of file to be exported. | |
- anon_xlsx_export_file_name: The name of the anonymized Excel file. | |
- log_files_output_paths: A list of paths where the log files will be saved. | |
- in_deny_list: List of specific terms to remove from the data. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab. | |
- output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable. | |
""" | |
def check_lists(list1, list2): | |
return any(string in list2 for string in list1) | |
def get_common_strings(list1, list2): | |
""" | |
Finds the common strings between two lists. | |
Args: | |
list1: The first list of strings. | |
list2: The second list of strings. | |
Returns: | |
A list containing the common strings. | |
""" | |
common_strings = [] | |
for string in list1: | |
if string in list2: | |
common_strings.append(string) | |
return common_strings | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
raise("Connection to AWS Comprehend service not found, please check connection details.") | |
# Check for chosen col, skip file if not found | |
all_cols_original_order = list(anon_df.columns) | |
any_cols_found = check_lists(chosen_cols, all_cols_original_order) | |
if any_cols_found == False: | |
out_message = "No chosen columns found in dataframe: " + out_file_part | |
print(out_message) | |
else: | |
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order) | |
# Split dataframe to keep only selected columns | |
#print("Remaining columns to redact:", chosen_cols_in_anon_df) | |
anon_df_part = anon_df[chosen_cols_in_anon_df] | |
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1) | |
# Anonymise the selected columns | |
anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client) | |
# Rejoin the dataframe together | |
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1) | |
anon_df_out = anon_df_out[all_cols_original_order] | |
# Export file | |
# Rename anonymisation strategy for file path naming | |
if anon_strat == "replace with 'REDACTED'": anon_strat_txt = "redact_replace" | |
elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type" | |
elif anon_strat == "redact completely": anon_strat_txt = "redact_remove" | |
else: anon_strat_txt = anon_strat | |
# If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv | |
if file_type == 'xlsx': | |
anon_export_file_name = anon_xlsx_export_file_name | |
if not os.path.exists(anon_xlsx_export_file_name): | |
wb = Workbook() | |
ws = wb.active # Get the default active sheet | |
ws.title = excel_sheet_name | |
wb.save(anon_xlsx_export_file_name) | |
# Create a Pandas Excel writer using XlsxWriter as the engine. | |
with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a', if_sheet_exists='replace') as writer: | |
# Write each DataFrame to a different worksheet. | |
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None) | |
decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt" | |
with open(decision_process_log_output_file, "w") as f: | |
f.write(decision_process_output_str) | |
else: | |
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv" | |
anon_df_out.to_csv(anon_export_file_name, index = None) | |
decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt" | |
with open(decision_process_log_output_file, "w") as f: | |
f.write(decision_process_output_str) | |
out_file_paths.append(anon_export_file_name) | |
log_files_output_paths.append(decision_process_log_output_file) | |
# As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques. | |
out_file_paths = list(set(out_file_paths)) | |
# Print result text to output text box if just anonymising open text | |
if anon_file=='open_text': | |
out_message = ["'" + anon_df_out['text'][0] + "'"] | |
return out_file_paths, out_message, key_string, log_files_output_paths | |
def anonymise_script(df:pd.DataFrame, anon_strat:str, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], in_deny_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=0, pii_identification_method:str="Local", chosen_redact_comprehend_entities:List[str]=[], comprehend_query_number:int=0, comprehend_client:botocore.client.BaseClient="", custom_entities=custom_entities, progress=Progress(track_tqdm=False)): | |
''' | |
Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen. | |
''' | |
print("Identifying personal information") | |
analyse_tic = time.perf_counter() | |
# Initialize analyzer_results as an empty dictionary to store results by column | |
results_by_column = {} | |
key_string = "" | |
# DataFrame to dict | |
df_dict = df.to_dict(orient="list") | |
if isinstance(in_allow_list, list): | |
if in_allow_list: | |
in_allow_list_flat = in_allow_list | |
else: | |
in_allow_list_flat = [] | |
elif isinstance(in_allow_list, pd.DataFrame): | |
if not in_allow_list.empty: | |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique()) | |
else: | |
in_allow_list_flat = [] | |
else: | |
in_allow_list_flat = [] | |
if isinstance(in_deny_list, pd.DataFrame): | |
if not in_deny_list.empty: | |
in_deny_list = in_deny_list.iloc[:, 0].tolist() | |
else: | |
# Handle the case where the DataFrame is empty | |
in_deny_list = [] # or some default value | |
# Sort the strings in order from the longest string to the shortest | |
in_deny_list = sorted(in_deny_list, key=len, reverse=True) | |
if in_deny_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(in_deny_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=in_deny_list, spelling_mistakes_max=in_deny_list, search_whole_phrase=max_fuzzy_spelling_mistakes_num) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
#analyzer = nlp_analyser #AnalyzerEngine() | |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser) | |
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED) | |
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer) | |
analyzer_results = [] | |
if pii_identification_method == "Local": | |
# Use custom analyzer to be able to track progress with Gradio | |
custom_results = analyze_dict(batch_analyzer, | |
df_dict, | |
language=language, | |
entities=chosen_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=in_allow_list_flat) | |
# Initialize results_by_column with custom entity results | |
for result in custom_results: | |
results_by_column[result.key] = result | |
# Convert the dictionary of results back to a list | |
analyzer_results = list(results_by_column.values()) | |
# AWS Comprehend calls | |
elif pii_identification_method == "AWS Comprehend" and comprehend_client: | |
# Only run Local anonymisation for entities that are not covered by AWS Comprehend | |
if custom_entities: | |
custom_redact_entities = [ | |
entity for entity in chosen_redact_comprehend_entities | |
if entity in custom_entities | |
] | |
if custom_redact_entities: | |
# Get results from analyze_dict | |
custom_results = analyze_dict(batch_analyzer, | |
df_dict, | |
language=language, | |
entities=custom_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=in_allow_list_flat) | |
# Initialize results_by_column with custom entity results | |
for result in custom_results: | |
results_by_column[result.key] = result | |
max_retries = 3 | |
retry_delay = 3 | |
# Process each text column in the dictionary | |
for column_name, texts in progress.tqdm(df_dict.items(), desc="Querying AWS Comprehend service.", unit = "Columns"): | |
# Get or create DictAnalyzerResult for this column | |
if column_name in results_by_column: | |
column_results = results_by_column[column_name] | |
else: | |
column_results = DictAnalyzerResult( | |
recognizer_results=[[] for _ in texts], | |
key=column_name, | |
value=texts | |
) | |
# Process each text in the column | |
for text_idx, text in progress.tqdm(enumerate(texts), desc="Querying AWS Comprehend service.", unit = "Row"): | |
for attempt in range(max_retries): | |
try: | |
response = comprehend_client.detect_pii_entities( | |
Text=str(text), | |
LanguageCode=language | |
) | |
comprehend_query_number += 1 | |
# Add all entities from this text to the column's recognizer_results | |
for entity in response["Entities"]: | |
if entity.get("Type") not in chosen_redact_comprehend_entities: | |
continue | |
recognizer_result = RecognizerResult( | |
entity_type=entity["Type"], | |
start=entity["BeginOffset"], | |
end=entity["EndOffset"], | |
score=entity["Score"] | |
) | |
column_results.recognizer_results[text_idx].append(recognizer_result) | |
break # Success, exit retry loop | |
except Exception as e: | |
if attempt == max_retries - 1: | |
print(f"AWS Comprehend calls failed for text: {text[:100]}... due to", e) | |
raise | |
time.sleep(retry_delay) | |
# Store or update the column results | |
results_by_column[column_name] = column_results | |
# Convert the dictionary of results back to a list | |
analyzer_results = list(results_by_column.values()) | |
elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client): | |
raise("Unable to redact, Comprehend connection details not found.") | |
else: | |
print("Unable to redact.") | |
# Usage in the main function: | |
decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict) | |
analyse_toc = time.perf_counter() | |
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds." | |
print(analyse_time_out) | |
# Set up the anonymization configuration WITHOUT DATE_TIME | |
simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}') | |
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}') | |
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}') | |
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}') | |
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}') | |
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption. | |
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}') | |
if anon_strat == "replace with 'REDACTED'": chosen_mask_config = simple_replace_config | |
if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config | |
if anon_strat == "redact completely": chosen_mask_config = redact_config | |
if anon_strat == "hash": chosen_mask_config = hash_config | |
if anon_strat == "mask": chosen_mask_config = mask_config | |
if anon_strat == "encrypt": | |
chosen_mask_config = people_encrypt_config | |
key = secrets.token_bytes(16) # 128 bits = 16 bytes | |
key_string = base64.b64encode(key).decode('utf-8') | |
# Now inject the key into the operator config | |
for entity, operator in chosen_mask_config.items(): | |
if operator.operator_name == "encrypt": | |
operator.params = {"key": key_string} | |
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config | |
# I think in general people will want to keep date / times - removed Mar 2025 as I don't want to assume for people. | |
#keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}') | |
combined_config = {**chosen_mask_config} #, **keep_date_config} | |
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config) | |
scrubbed_df = pd.DataFrame(anonymizer_results) | |
return scrubbed_df, key_string, decision_process_output_str |