File size: 12,784 Bytes
34bd97b
 
 
 
94e514b
34bd97b
 
0042e78
 
 
 
34bd97b
 
 
 
 
 
 
f93e49c
 
 
34bd97b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0042e78
 
 
 
 
34bd97b
 
0042e78
 
 
 
 
 
 
 
 
 
 
34bd97b
 
0042e78
 
34bd97b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0042e78
 
 
 
 
 
 
 
 
 
34bd97b
 
 
 
 
 
0042e78
 
34bd97b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0042e78
94e514b
0042e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0042e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34bd97b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from __future__ import annotations
import contextlib
import csv
import datetime
from datetime import datetime
import os
import re
import boto3
import botocore
import uuid
import time
from collections.abc import Sequence
from multiprocessing import Lock
from pathlib import Path
from typing import TYPE_CHECKING, Any
from gradio_client import utils as client_utils
import gradio as gr
from gradio import utils, wasm_utils
from tools.config import AWS_REGION, AWS_ACCESS_KEY, AWS_SECRET_KEY, RUN_AWS_FUNCTIONS
from botocore.exceptions import NoCredentialsError, TokenRetrievalError


if TYPE_CHECKING:
    from gradio.components import Component
from gradio.flagging import FlaggingCallback
from threading import Lock

class CSVLogger_custom(FlaggingCallback):
    """
    The default implementation of the FlaggingCallback abstract class in gradio>=5.0. Each flagged
    sample (both the input and output data) is logged to a CSV file with headers on the machine running
    the gradio app. Unlike ClassicCSVLogger, this implementation is concurrent-safe and it creates a new
    dataset file every time the headers of the CSV (derived from the labels of the components) change. It also
    only creates columns for "username" and "flag" if the flag_option and username are provided, respectively.

    Example:
        import gradio as gr
        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}
        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
                            flagging_callback=CSVLogger())
    Guides: using-flagging
    """

    def __init__(
        self,
        simplify_file_data: bool = True,
        verbose: bool = True,
        dataset_file_name: str | None = None,
    ):
        """
        Parameters:
            simplify_file_data: If True, the file data will be simplified before being written to the CSV file. If CSVLogger is being used to cache examples, this is set to False to preserve the original FileData class
            verbose: If True, prints messages to the console about the dataset file creation
            dataset_file_name: The name of the dataset file to be created (should end in ".csv"). If None, the dataset file will be named "dataset1.csv" or the next available number.
        """
        self.simplify_file_data = simplify_file_data
        self.verbose = verbose
        self.dataset_file_name = dataset_file_name
        self.lock = (
            Lock() if not wasm_utils.IS_WASM else contextlib.nullcontext()
        )  # The multiprocessing module doesn't work on Lite.

    def setup(
        self,
        components: Sequence[Component],
        flagging_dir: str | Path,
    ):
        self.components = components
        self.flagging_dir = Path(flagging_dir)
        self.first_time = True

    def _create_dataset_file(
    self, 
    additional_headers: list[str] | None = None,
    replacement_headers: list[str] | None = None
):
        os.makedirs(self.flagging_dir, exist_ok=True)

        if replacement_headers:
            if len(replacement_headers) != len(self.components):
                raise ValueError(
                    f"replacement_headers must have the same length as components "
                    f"({len(replacement_headers)} provided, {len(self.components)} expected)"
                )
            headers = replacement_headers + ["timestamp"]
        else:
            if additional_headers is None:
                additional_headers = []
            headers = [
                getattr(component, "label", None) or f"component {idx}"
                for idx, component in enumerate(self.components)
            ] + additional_headers + ["timestamp"]

        headers = utils.sanitize_list_for_csv(headers)
        dataset_files = list(Path(self.flagging_dir).glob("dataset*.csv"))

        if self.dataset_file_name:
            self.dataset_filepath = self.flagging_dir / self.dataset_file_name
        elif dataset_files:
            try:
                latest_file = max(
                    dataset_files, key=lambda f: int(re.findall(r"\d+", f.stem)[0])
                )
                latest_num = int(re.findall(r"\d+", latest_file.stem)[0])

                with open(latest_file, newline="", encoding="utf-8") as csvfile:
                    reader = csv.reader(csvfile)
                    existing_headers = next(reader, None)

                if existing_headers != headers:
                    new_num = latest_num + 1
                    self.dataset_filepath = self.flagging_dir / f"dataset{new_num}.csv"
                else:
                    self.dataset_filepath = latest_file
            except Exception:
                self.dataset_filepath = self.flagging_dir / "dataset1.csv"
        else:
            self.dataset_filepath = self.flagging_dir / "dataset1.csv"

        if not Path(self.dataset_filepath).exists():
            with open(
                self.dataset_filepath, "w", newline="", encoding="utf-8"
            ) as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow(utils.sanitize_list_for_csv(headers))
            if self.verbose:
                print("Created dataset file at:", self.dataset_filepath)
        elif self.verbose:
            print("Using existing dataset file at:", self.dataset_filepath)

    def flag(
    self,
    flag_data: list[Any],
    flag_option: str | None = None,
    username: str | None = None,
    save_to_csv: bool = True,
    save_to_dynamodb: bool = False,
    dynamodb_table_name: str | None = None,
    dynamodb_headers: list[str] | None = None,  # New: specify headers for DynamoDB
    replacement_headers: list[str] | None = None
) -> int:
        if self.first_time:
            additional_headers = []
            if flag_option is not None:
                additional_headers.append("flag")
            if username is not None:
                additional_headers.append("username")
            additional_headers.append("id")
            self._create_dataset_file(additional_headers=additional_headers, replacement_headers=replacement_headers)
            self.first_time = False

        csv_data = []
        for idx, (component, sample) in enumerate(
            zip(self.components, flag_data, strict=False)
        ):
            save_dir = (
                self.flagging_dir
                / client_utils.strip_invalid_filename_characters(
                    getattr(component, "label", None) or f"component {idx}"
                )
            )
            if utils.is_prop_update(sample):
                csv_data.append(str(sample))
            else:
                data = (
                    component.flag(sample, flag_dir=save_dir)
                    if sample is not None
                    else ""
                )
                if self.simplify_file_data:
                    data = utils.simplify_file_data_in_str(data)
                csv_data.append(data)

        if flag_option is not None:
            csv_data.append(flag_option)
        if username is not None:
            csv_data.append(username)


        timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] # Correct format for Amazon Athena
        csv_data.append(timestamp)

        generated_id = str(uuid.uuid4())
        csv_data.append(generated_id)

        # Build the headers
        headers = (
            [getattr(component, "label", None) or f"component {idx}" for idx, component in enumerate(self.components)]
        )
        if flag_option is not None:
            headers.append("flag")
        if username is not None:
            headers.append("username")
        headers.append("timestamp")
        headers.append("id")

        line_count = -1

        if save_to_csv:
            with self.lock:
                with open(self.dataset_filepath, "a", newline="", encoding="utf-8") as csvfile:
                    writer = csv.writer(csvfile)
                    writer.writerow(utils.sanitize_list_for_csv(csv_data))
                with open(self.dataset_filepath, encoding="utf-8") as csvfile:
                    line_count = len(list(csv.reader(csvfile))) - 1

        if save_to_dynamodb == True:

            if RUN_AWS_FUNCTIONS == "1":
                try:
                    print("Connecting to DynamoDB via existing SSO connection")
                    dynamodb = boto3.resource('dynamodb', region_name=AWS_REGION)
                    #client = boto3.client('dynamodb')
                    
                    test_connection = dynamodb.meta.client.list_tables()                   

                except Exception as e:
                    print("No SSO credentials found:", e)                    
                    if AWS_ACCESS_KEY and AWS_SECRET_KEY:
                        print("Trying DynamoDB credentials from environment variables")
                        dynamodb = boto3.resource('dynamodb',aws_access_key_id=AWS_ACCESS_KEY, 
                            aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION)
                        # client = boto3.client('dynamodb',aws_access_key_id=AWS_ACCESS_KEY, 
                        #     aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION)
                    else:
                        raise Exception("AWS credentials for DynamoDB logging not found")
            else:
                raise Exception("AWS credentials for DynamoDB logging not found")
            
            if dynamodb_table_name is None:
                raise ValueError("You must provide a dynamodb_table_name if save_to_dynamodb is True")            
            
            if dynamodb_headers:
                dynamodb_headers = dynamodb_headers
            if not dynamodb_headers and replacement_headers:
                dynamodb_headers = replacement_headers
            elif headers:
                dynamodb_headers = headers
            elif not dynamodb_headers:
                raise ValueError("Headers not found. You must provide dynamodb_headers or replacement_headers to create a new table.")
            
            if flag_option is not None:
                if "flag" not in dynamodb_headers:
                    dynamodb_headers.append("flag")
                if username is not None:
                    if "username" not in dynamodb_headers:
                        dynamodb_headers.append("username")
                if "timestamp" not in dynamodb_headers:
                    dynamodb_headers.append("timestamp")
                if "id" not in dynamodb_headers:
                    dynamodb_headers.append("id")

            # Table doesn't exist — create it
            try:
                table = dynamodb.Table(dynamodb_table_name)
                table.load()
            except botocore.exceptions.ClientError as e:
                if e.response['Error']['Code'] == 'ResourceNotFoundException':
                    
                    #print(f"Creating DynamoDB table '{dynamodb_table_name}'...")
                    #print("dynamodb_headers:", dynamodb_headers)
                    
                    attribute_definitions = [
                        {'AttributeName': 'id', 'AttributeType': 'S'}  # Only define key attributes here
                    ]

                    table = dynamodb.create_table(
                        TableName=dynamodb_table_name,
                        KeySchema=[
                            {'AttributeName': 'id', 'KeyType': 'HASH'}  # Partition key
                        ],
                        AttributeDefinitions=attribute_definitions,
                        BillingMode='PAY_PER_REQUEST'
)
                    # Wait until the table exists
                    table.meta.client.get_waiter('table_exists').wait(TableName=dynamodb_table_name)
                    time.sleep(5)
                    print(f"Table '{dynamodb_table_name}' created successfully.")
                else:
                    raise

            # Prepare the DynamoDB item to upload

            try:
                item = {
                    'id': str(generated_id),  # UUID primary key
                    #'created_by': username if username else "unknown",
                    'timestamp': timestamp,
                }

                #print("dynamodb_headers:", dynamodb_headers)
                #print("csv_data:", csv_data)

                # Map the headers to values
                item.update({header: str(value) for header, value in zip(dynamodb_headers, csv_data)})

                #print("item:", item)

                table.put_item(Item=item)

                print("Successfully uploaded log to DynamoDB")
            except Exception as e:
                print("Could not upload log to DynamobDB due to", e)

        return line_count