from tensorflow.keras.models import load_model import streamlit as st import cv2 import numpy as np from PIL import Image # Load the ensemble model using tf.keras.models.load_model() loaded_ensemble_model = load_model('ensemble_model.h5') st.markdown('

Ensemble Image classification model for Alzheimer

', unsafe_allow_html=True) st.markdown('

The image classification model classifies brain scan image into following categories:

', unsafe_allow_html=True) st.markdown('

Moderate,Mild,Very Mild, NonDemented

', unsafe_allow_html=True) upload= st.file_uploader('Insert image for classification', type=['png','jpg']) c1, c2= st.columns(2) if upload is not None: im= Image.open(upload) im = im.convert('RGB') img= np.asarray(im) image= cv2.resize(img,(150, 150)) img_array = image.reshape(1,150,150,3) c1.header('Input Image') c1.image(im) loaded_ensemble_model = load_model('ensemble_model.h5') pred = loaded_ensemble_model.predict([img_array,img_array,img_array]) labels = {0:'MildDemented',1:'ModerateDemented',2:'NonDemented',3:'VeryMildDemented'} c2.header('Output') c2.subheader('Predicted class :') c2.write(labels[pred.argmax()]) c2.subheader('With :') c2.write(f'{int(pred.max()*100)}% assurity')