import pandas as pd from sklearn.preprocessing import StandardScaler import logging from sklearn.datasets import load_breast_cancer logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def load_and_preprocess_data(): """Load and preprocess the breast cancer data.""" try: # Load data from sklearn dataset = load_breast_cancer() feature_names = dataset.feature_names # Create DataFrame df = pd.DataFrame(dataset.data, columns=feature_names) # Scale the features scaler = StandardScaler() X_scaled = scaler.fit_transform(df) X_scaled = pd.DataFrame(X_scaled, columns=feature_names) return X_scaled, dataset.target, scaler except Exception as e: logger.error(f"Error in data preprocessing: {str(e)}") raise