app / src /preprocessing /parkinsons.py
schandel08's picture
Files uploaded
a8b81f3
import pandas as pd
from sklearn.preprocessing import StandardScaler
import logging
from pathlib import Path
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_and_preprocess_parkinsons_data():
try:
# Load the dataset from local datasets folder
data_path = Path(__file__).resolve().parent.parent.parent / "datasets" / "parkinsons.csv"
df = pd.read_csv(data_path)
# Drop the 'name' column if it exists
if 'name' in df.columns:
df = df.drop('name', axis=1)
# Rename 'status' to match our convention (1 for disease, 0 for healthy)
if 'status' in df.columns:
df['status'] = df['status'].map({0: 1, 1: 0})
# Separate features and target
X = df.drop('status', axis=1)
y = df['status']
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = pd.DataFrame(X_scaled, columns=X.columns)
return X_scaled, y, scaler
except Exception as e:
logger.error(f"Error in Parkinson's data preprocessing: {str(e)}")
raise