File size: 56,628 Bytes
a8b81f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
import streamlit as st
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import os
import time
from datetime import datetime
import plotly.express as px

# Add project root to Python path
project_root = Path(__file__).resolve().parent.parent
sys.path.append(str(project_root))

from src.model import BreastCancerModel
from src.models.diabetes import DiabetesModel
from src.models.heart_disease import HeartDiseaseModel
from src.models.parkinsons import ParkinsonsModel
from src.config import (
    BREAST_CANCER_MODEL_PATH,
    DIABETES_MODEL_PATH,
    HEART_DISEASE_MODEL_PATH,
    PARKINSONS_MODEL_PATH
)

# Set page config
st.set_page_config(
    page_title="Medical Prediction System",
    page_icon="πŸ₯",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Add this updated CSS at the beginning of the file
st.markdown("""
    <style>
    /* Original styling */
    .success-message {
        background-color: #28a745;
        color: white;
        padding: 10px;
        border-radius: 5px;
        margin: 10px 0;
    }

    .success-icon {
        font-size: 20px;
        margin-right: 10px;
    }

    .features-grid {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
        gap: 1rem;
        margin: 2rem 0;
    }

    .feature-card {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        text-align: center;
    }

    .feature-icon {
        font-size: 2rem;
        margin-bottom: 1rem;
    }

    .card {
        background: white;
        padding: 1rem;
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
        margin-bottom: 1rem;
    }

    .tool-section {
        margin: 2rem 0;
    }
    </style>
""", unsafe_allow_html=True)

def check_model_exists(model_path):
    """Check if a model file exists"""
    return os.path.exists(model_path)

def load_animation():
    """Show a loading animation"""
    with st.spinner('Loading...'):
        time.sleep(0.5)

def show_success_animation():
    """Show success animation"""
    placeholder = st.empty()
    for i in range(5):
        placeholder.markdown(f"{'🎯' * (i+1)}")
        time.sleep(0.1)
    placeholder.empty()

def add_home_button():
    """Add a Back to Home button"""
    if st.button("🏠 Back to Home"):
        st.session_state.page = "Home"

def show_loading_page():
    """Show an animated loading screen"""
    placeholder = st.empty()
    with placeholder.container():
        st.markdown("""
            <div class="loading-container">
                <h1>πŸ₯ Medical AI Assistant</h1>
                <div class="loading-spinner"></div>
                <p>Loading advanced diagnostic tools...</p>
            </div>
        """, unsafe_allow_html=True)
    time.sleep(1)
    placeholder.empty()

def show_success_message(message):
    """Show animated success message"""
    st.markdown(f"""
        <div class="success-message">
            <span class="success-icon">βœ“</span>
            {message}
        </div>
    """, unsafe_allow_html=True)

def show_feature_cards():
    """Show animated feature cards"""
    st.markdown("""
        <div class="features-grid">
            <div class="feature-card">
                <span class="feature-icon">🎯</span>
                <h3>High Accuracy</h3>
                <p>Advanced ML algorithms with 96.5% accuracy</p>
            </div>
            <div class="feature-card">
                <span class="feature-icon">⚑</span>
                <h3>Real-time Analysis</h3>
                <p>Get instant predictions and risk assessments</p>
            </div>
            <div class="feature-card">
                <span class="feature-icon">πŸ”’</span>
                <h3>Secure Analysis</h3>
                <p>Your data is processed securely and privately</p>
            </div>
        </div>
    """, unsafe_allow_html=True)

def home_page():
    show_loading_page()
    
    # Hero section with gradient background
    st.markdown("""
        <div style="
            padding: 2rem;
            border-radius: 15px;
            background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
            color: white;
            margin-bottom: 2rem;
            text-align: center;
            animation: fadeIn 1s ease-out;
        ">
            <h1 style="font-size: 3rem; margin-bottom: 1rem;">πŸ₯ Medical AI Assistant</h1>
            <p style="font-size: 1.2rem; opacity: 0.9;">
                Advanced AI-powered diagnostics for healthcare professionals
            </p>
        </div>
    """, unsafe_allow_html=True)
    
    # Quick stats cards
    st.markdown("""
        <div style="
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
            gap: 1rem;
            margin-bottom: 2rem;
        ">
            <div style="
                background: white;
                padding: 1.5rem;
                border-radius: 10px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
                border-top: 4px solid #2ecc71;
            ">
                <h3 style="color: #2ecc71; margin: 0;">96.5%</h3>
                <p style="color: #666; margin: 0;">Accuracy Rate</p>
            </div>
            <div style="
                background: white;
                padding: 1.5rem;
                border-radius: 10px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
                border-top: 4px solid #3498db;
            ">
                <h3 style="color: #3498db; margin: 0;">5,200+</h3>
                <p style="color: #666; margin: 0;">Assessments</p>
            </div>
            <div style="
                background: white;
                padding: 1.5rem;
                border-radius: 10px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
                border-top: 4px solid #e74c3c;
            ">
                <h3 style="color: #e74c3c; margin: 0;">0.5s</h3>
                <p style="color: #666; margin: 0;">Response Time</p>
            </div>
            <div style="
                background: white;
                padding: 1.5rem;
                border-radius: 10px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
                border-top: 4px solid #9b59b6;
            ">
                <h3 style="color: #9b59b6; margin: 0;">1,200+</h3>
                <p style="color: #666; margin: 0;">Active Users</p>
            </div>
        </div>
    """, unsafe_allow_html=True)
    
    # Available tools section
    st.markdown("""
        <h2 style="
            text-align: center;
            margin: 2rem 0;
            color: #2c3e50;
        ">Available Assessment Tools</h2>
    """, unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("""
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin-bottom: 1rem;
                border-left: 5px solid #e74c3c;
            ">
                <h3 style="color: #e74c3c;">πŸ”¬ Breast Cancer Assessment</h3>
                <p style="color: #666;">Advanced cellular analysis using machine learning to assess cancer risk with high accuracy.</p>
            </div>
        """, unsafe_allow_html=True)
        if st.button("Start Breast Cancer Assessment", key="breast"):
            st.session_state.page = "Breast Cancer"
            
        st.markdown("""
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin-bottom: 1rem;
                border-left: 5px solid #3498db;
            ">
                <h3 style="color: #3498db;">❀️ Heart Disease Assessment</h3>
                <p style="color: #666;">Comprehensive cardiovascular risk analysis using multiple health indicators.</p>
            </div>
        """, unsafe_allow_html=True)
        if st.button("Start Heart Disease Assessment", key="heart"):
            st.session_state.page = "Heart Disease"
    
    with col2:
        st.markdown("""
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin-bottom: 1rem;
                border-left: 5px solid #2ecc71;
            ">
                <h3 style="color: #2ecc71;">🩺 Diabetes Assessment</h3>
                <p style="color: #666;">Predictive analysis of diabetes risk based on key health metrics and indicators.</p>
            </div>
        """, unsafe_allow_html=True)
        if st.button("Start Diabetes Assessment", key="diabetes"):
            st.session_state.page = "Diabetes"
            
        st.markdown("""
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin-bottom: 1rem;
                border-left: 5px solid #9b59b6;
            ">
                <h3 style="color: #9b59b6;">🧠 Parkinson's Assessment</h3>
                <p style="color: #666;">Advanced voice pattern analysis for early detection of Parkinson's disease.</p>
            </div>
        """, unsafe_allow_html=True)
        if st.button("Start Parkinson's Assessment", key="parkinsons"):
            st.session_state.page = "Parkinson's Disease"
    
    # Technical Specifications Section
    st.markdown("""
        <h2 style="text-align: center; color: #2c3e50; margin: 2rem 0;">Technical Specifications</h2>
        <div style="
            background: white;
            padding: 2rem;
            border-radius: 15px;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            margin: 2rem 0;
        ">
            <div style="
                display: grid;
                grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
                gap: 2rem;
            ">
                <div>
                    <h3 style="color: #3498db;">πŸ”¬ Data Sources</h3>
                    <ul style="color: #666; list-style-type: none; padding-left: 0;">
                        <li style="margin: 0.5rem 0;">β€’ Breast Cancer Wisconsin Dataset</li>
                        <li style="margin: 0.5rem 0;">β€’ Pima Indians Diabetes Database</li>
                        <li style="margin: 0.5rem 0;">β€’ Heart Disease UCI Dataset</li>
                        <li style="margin: 0.5rem 0;">β€’ Parkinson's Disease Dataset</li>
                    </ul>
                </div>
                <div>
                    <h3 style="color: #3498db;">βš™οΈ Technologies Used</h3>
                    <ul style="color: #666; list-style-type: none; padding-left: 0;">
                        <li style="margin: 0.5rem 0;">β€’ Machine Learning: scikit-learn</li>
                        <li style="margin: 0.5rem 0;">β€’ Web Interface: Streamlit</li>
                        <li style="margin: 0.5rem 0;">β€’ Data Processing: pandas, numpy</li>
                        <li style="margin: 0.5rem 0;">β€’ Version Control: Git</li>
                    </ul>
                </div>
                <div>
                    <h3 style="color: #3498db;">πŸ“Š Model Performance</h3>
                    <ul style="color: #666; list-style-type: none; padding-left: 0;">
                        <li style="margin: 0.5rem 0;">β€’ Breast Cancer Detection: 96.5%</li>
                        <li style="margin: 0.5rem 0;">β€’ Diabetes Prediction: 94.2%</li>
                        <li style="margin: 0.5rem 0;">β€’ Heart Disease Assessment: 91.8%</li>
                        <li style="margin: 0.5rem 0;">β€’ Parkinson's Detection: 93.5%</li>
                    </ul>
                </div>
            </div>
        </div>
    """, unsafe_allow_html=True)

    # Features Section
    st.markdown("""
        <h2 style="text-align: center; color: #2c3e50; margin: 2rem 0;">Why Choose Our Platform?</h2>
        <div style="
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
            gap: 1.5rem;
            margin: 2rem 0;
        ">
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
            ">
                <div style="font-size: 3rem; margin-bottom: 1rem;">🎯</div>
                <h3 style="color: #2c3e50;">High Accuracy</h3>
                <p style="color: #666;">Advanced ML algorithms with 96.5% accuracy in predictions</p>
            </div>
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
            ">
                <div style="font-size: 3rem; margin-bottom: 1rem;">⚑</div>
                <h3 style="color: #2c3e50;">Real-time Analysis</h3>
                <p style="color: #666;">Get instant predictions and comprehensive risk assessments</p>
            </div>
            <div style="
                background: white;
                padding: 2rem;
                border-radius: 15px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                text-align: center;
            ">
                <div style="font-size: 3rem; margin-bottom: 1rem;">πŸ”’</div>
                <h3 style="color: #2c3e50;">Secure Analysis</h3>
                <p style="color: #666;">Your data is processed securely and privately</p>
            </div>
        </div>
    """, unsafe_allow_html=True)
    
    # Research & Publications Section
    st.markdown("## Research & Publications")
    
    # Create three columns for the sections
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.markdown("### πŸ“š Recent Papers")
        with st.container():
            st.markdown("""
                **Machine Learning in Medical Diagnosis** (2023)  
                *Impact on early disease detection and prevention*
            """)
            st.markdown("""
                **AI Applications in Healthcare** (2022)  
                *Transforming patient care through technology*
            """)
            st.markdown("""
                **Early Disease Detection Using ML** (2023)  
                *Predictive analytics in healthcare*
            """)
    
    with col2:
        st.markdown("### πŸ” Methodology")
        with st.container():
            st.info("""
                Our system employs advanced machine learning algorithms trained on extensive medical datasets, 
                ensuring reliable and accurate predictions for various medical conditions.

                All models undergo rigorous testing and validation procedures, with continuous monitoring 
                and updates to maintain high accuracy levels.
            """)
    
    with col3:
        st.markdown("### 🎯 Future Developments")
        
        # Future Development Cards
        with st.container():
            st.success("**Integration**\n\nElectronic health records integration for seamless data flow")
            
            st.success("**Visualization**\n\nAdvanced visualization tools for better insight into predictions")
            
            st.success("**Mobile Access**\n\nDevelopment of mobile applications for on-the-go access")

    # Add some spacing
    st.markdown("<br>", unsafe_allow_html=True)

    # Footer Section
    st.markdown("---")  # Add a divider
    
    # Header
    st.header("Ready to get started?")
    st.write("Choose any assessment tool above to begin your analysis")
    
    # Create three columns for contact, resources, and legal
    contact_col, resources_col, legal_col = st.columns(3)
    
    with contact_col:
        st.subheader("Contact")
        st.markdown("""
            πŸ“§ **Email:** [email protected]  
            πŸ“ž **Phone:** +1 (555) 123-4567
        """)
    
    with resources_col:
        st.subheader("Resources")
        st.markdown("""
            πŸ“š [Documentation](https://docs.medicalai.com)  
            πŸ”§ [API Reference](https://api.medicalai.com)
        """)
    
    with legal_col:
        st.subheader("Legal")
        st.markdown("""
            πŸ“œ [Privacy Policy](https://privacy.medicalai.com)  
            βš–οΈ [Terms of Service](https://terms.medicalai.com)
        """)
    
    # Copyright and version info
    st.markdown("---")
    col1, col2 = st.columns(2)
    with col1:
        st.markdown("Β© 2024 Medical AI Assistant | Version 1.0.0")
    with col2:
        st.markdown("Developed with ❀️ for healthcare professionals")

    # Add new sections
    st.markdown("## πŸ“Š Additional Features")
    
    # Create tabs for different features
    tab1, tab2, tab3 = st.tabs(["πŸ“ˆ History", "πŸ” Analysis", "πŸ’‘ Recommendations"])
    
    with tab1:
        show_patient_history()
        export_report()
    
    with tab2:
        show_risk_factors_analysis()
        show_trends_analysis()
    
    with tab3:
        show_recommendations()
        compare_assessments()

def breast_cancer_prediction():
    add_home_button()
    show_loading_page()
    
    st.markdown("""
        <div class="page-header">
            <h1>Breast Cancer Risk Assessment</h1>
            <p class="subtitle">Advanced cellular analysis using machine learning</p>
        </div>
    """, unsafe_allow_html=True)
    
    if not check_model_exists(BREAST_CANCER_MODEL_PATH):
        st.error("⚠️ Breast Cancer model not found. Please train the model first.")
        return
    
    try:
        model = BreastCancerModel.load_model()
    except Exception as e:
        st.error(f"⚠️ Error loading model: {str(e)}")
        return
    
    # Create tabs for input methods
    tab1, tab2 = st.tabs(["πŸ“Š Standard Input", "πŸ”¬ Detailed Input"])
    
    with tab1:
        col1, col2 = st.columns(2)
        
        with col1:
            mean_radius = st.slider("Mean Radius", 6.0, 28.0, 14.0, help="Average size of cell nuclei")
            mean_texture = st.slider("Mean Texture", 9.0, 40.0, 14.0, help="Average standard deviation of gray-scale values")
            mean_perimeter = st.slider("Mean Perimeter", 40.0, 190.0, 90.0, help="Average size of the core tumor")
            mean_area = st.slider("Mean Area", 140.0, 2500.0, 550.0, help="Average area of cell nuclei")
        
        with col2:
            mean_smoothness = st.slider("Mean Smoothness", 0.05, 0.16, 0.1, help="Average of local variation in radius lengths")
            mean_compactness = st.slider("Mean Compactness", 0.02, 0.35, 0.1, help="Average of perimeter^2 / area - 1.0")
            mean_concavity = st.slider("Mean Concavity", 0.0, 0.5, 0.1, help="Average severity of concave portions of the contour")
            mean_concave_points = st.slider("Mean Concave Points", 0.0, 0.2, 0.1, help="Average number of concave portions of the contour")
    
    with tab2:
        st.markdown("### Detailed Measurements")
        col1, col2, col3 = st.columns(3)
        
        with col1:
            radius_mean = st.number_input("Radius (mean)", 6.0, 28.0, 14.0, help="Mean of distances from center to points on the perimeter")
            texture_mean = st.number_input("Texture (mean)", 9.0, 40.0, 14.0, help="Standard deviation of gray-scale values")
            perimeter_mean = st.number_input("Perimeter (mean)", 40.0, 190.0, 90.0, help="Mean size of the core tumor")
            area_mean = st.number_input("Area (mean)", 140.0, 2500.0, 550.0, help="Mean area of the tumor")
            smoothness_mean = st.number_input("Smoothness (mean)", 0.05, 0.16, 0.1, help="Mean of local variation in radius lengths")
            compactness_mean = st.number_input("Compactness (mean)", 0.02, 0.35, 0.1, help="Mean of perimeter^2 / area - 1.0")
            concavity_mean = st.number_input("Concavity (mean)", 0.0, 0.5, 0.1, help="Mean of severity of concave portions")
            concave_points_mean = st.number_input("Concave points (mean)", 0.0, 0.2, 0.1, help="Mean number of concave portions")
            symmetry_mean = st.number_input("Symmetry (mean)", 0.1, 0.3, 0.2, help="Mean symmetry of the tumor")
            fractal_dimension_mean = st.number_input("Fractal dimension (mean)", 0.05, 0.1, 0.06, help="Mean fractal dimension")
        
        with col2:
            radius_se = st.number_input("Radius (SE)", 0.1, 2.0, 0.4, help="Standard error of distances from center to points")
            texture_se = st.number_input("Texture (SE)", 0.2, 4.0, 1.0, help="Standard error of gray-scale values")
            perimeter_se = st.number_input("Perimeter (SE)", 1.0, 20.0, 5.0, help="Standard error of perimeter")
            area_se = st.number_input("Area (SE)", 6.0, 540.0, 40.0, help="Standard error of area")
            smoothness_se = st.number_input("Smoothness (SE)", 0.001, 0.03, 0.007, help="Standard error of smoothness")
            compactness_se = st.number_input("Compactness (SE)", 0.002, 0.135, 0.025, help="Standard error of compactness")
            concavity_se = st.number_input("Concavity (SE)", 0.0, 0.396, 0.03, help="Standard error of concavity")
            concave_points_se = st.number_input("Concave points (SE)", 0.0, 0.05, 0.01, help="Standard error of concave points")
            symmetry_se = st.number_input("Symmetry (SE)", 0.008, 0.079, 0.02, help="Standard error of symmetry")
            fractal_dimension_se = st.number_input("Fractal dimension (SE)", 0.001, 0.029, 0.003, help="Standard error of fractal dimension")
        
        with col3:
            radius_worst = st.number_input("Radius (worst)", 7.0, 36.0, 16.0, help="Worst radius")
            texture_worst = st.number_input("Texture (worst)", 12.0, 50.0, 21.0, help="Worst texture")
            perimeter_worst = st.number_input("Perimeter (worst)", 50.0, 250.0, 107.0, help="Worst perimeter")
            area_worst = st.number_input("Area (worst)", 185.0, 4250.0, 750.0, help="Worst area")
            smoothness_worst = st.number_input("Smoothness (worst)", 0.07, 0.22, 0.13, help="Worst smoothness")
            compactness_worst = st.number_input("Compactness (worst)", 0.03, 1.06, 0.25, help="Worst compactness")
            concavity_worst = st.number_input("Concavity (worst)", 0.0, 1.25, 0.27, help="Worst concavity")
            concave_points_worst = st.number_input("Concave points (worst)", 0.0, 0.29, 0.11, help="Worst concave points")
            symmetry_worst = st.number_input("Symmetry (worst)", 0.15, 0.66, 0.29, help="Worst symmetry")
            fractal_dimension_worst = st.number_input("Fractal dimension (worst)", 0.055, 0.207, 0.083, help="Worst fractal dimension")

    # Add analyze button outside tabs to work for both
    if st.button("Analyze Risk", help="Click to analyze breast cancer risk"):
        with st.spinner('Analyzing samples...'):
            try:
                # Get input data based on active tab
                if tab1._active:
                    input_data = np.array([
                        mean_radius, mean_texture, mean_perimeter, mean_area, mean_smoothness,
                        mean_compactness, mean_concavity, mean_concave_points, 0.2, 0.06,
                        0.4, 0.4, 2.0, 20.0, 0.01, 0.02, 0.02, 0.01, 0.02, 0.003,
                        16.0, 16.0, 100.0, 700.0, 0.12, 0.15, 0.15, 0.1, 0.25, 0.08
                    ]).reshape(1, -1)
                else:
                    input_data = np.array([
                        radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean,
                        compactness_mean, concavity_mean, concave_points_mean, symmetry_mean, fractal_dimension_mean,
                        radius_se, texture_se, perimeter_se, area_se, smoothness_se,
                        compactness_se, concavity_se, concave_points_se, symmetry_se, fractal_dimension_se,
                        radius_worst, texture_worst, perimeter_worst, area_worst, smoothness_worst,
                        compactness_worst, concavity_worst, concave_points_worst, symmetry_worst, fractal_dimension_worst
                    ]).reshape(1, -1)
                
                prediction, similar_cases, similar_outcomes, distances = model.predict(input_data)
                
                # Show prediction results
                if prediction[0] == 0:
                    st.error("⚠️ High Risk of Breast Cancer")
                    st.warning(
                        "The analysis indicates characteristics commonly associated with malignant breast masses."
                    )
                    
                    # Show risk factors based on active tab
                    st.subheader("Risk Factors Identified")
                    if tab1._active:
                        if mean_radius > 15:
                            st.warning(f"β€’ Mean radius ({mean_radius:.2f}) is elevated")
                        if mean_concave_points > 0.05:
                            st.warning(f"β€’ Mean concave points ({mean_concave_points:.3f}) are high")
                    else:
                        if radius_worst > 20:
                            st.warning(f"β€’ Worst radius ({radius_worst:.2f}) is significantly elevated")
                        if concave_points_worst > 0.15:
                            st.warning(f"β€’ Worst concave points ({concave_points_worst:.3f}) are very high")
                else:
                    st.success("βœ… Low Risk of Breast Cancer")
                    st.info(
                        "The analysis indicates characteristics commonly associated with benign breast masses."
                    )
                
                # Show similar cases
                with st.expander("View Similar Cases"):
                    st.markdown("### Reference Cases")
                    st.markdown("These are similar cases from our database:")
                    
                    similar_df = pd.DataFrame({
                        'Mean Radius': similar_cases['mean radius'].round(2),
                        'Mean Texture': similar_cases['mean texture'].round(2),
                        'Mean Area': similar_cases['mean area'].round(2),
                        'Diagnosis': ['Malignant' if o == 0 else 'Benign' for o in similar_outcomes],
                        'Similarity': [f"{(1 - d/d.max())*100:.1f}%" for d in distances]
                    })
                    st.dataframe(similar_df)
                
                show_success_message("Analysis completed successfully!")
            except Exception as e:
                st.error(f"⚠️ Error during analysis: {str(e)}")

def diabetes_prediction():
    # Add home button at the top
    add_home_button()
    
    load_animation()
    st.header("Diabetes Prediction")
    st.write("Enter measurements to predict diabetes risk")
    
    try:
        model = DiabetesModel.load_model()
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return
    
    col1, col2 = st.columns(2)
    
    with col1:
        pregnancies = st.number_input("Number of Pregnancies", value=0, min_value=0)
        glucose = st.number_input("Glucose (mg/dL)", value=120, min_value=0)
        blood_pressure = st.number_input("Blood Pressure (mm Hg)", value=70, min_value=0)
        skin_thickness = st.number_input("Skin Thickness (mm)", value=20, min_value=0)
        
    with col2:
        insulin = st.number_input("Insulin (mu U/ml)", value=79, min_value=0)
        bmi = st.number_input("BMI", value=25.0, min_value=0.0)
        dpf = st.number_input("Diabetes Pedigree Function", value=0.5, min_value=0.0)
        age = st.number_input("Age", value=33, min_value=0)
    
    if st.button("Predict"):
        try:
            # Calculate derived features
            glucose_bmi = glucose * bmi / 1000
            glucose_age = glucose * age / 100
            
            input_data = np.array([
                pregnancies, glucose, blood_pressure, skin_thickness,
                insulin, bmi, dpf, age, glucose_bmi, glucose_age
            ]).reshape(1, -1)
            
            prediction, similar_cases, similar_outcomes, distances = model.predict(input_data)
            
            # Show prediction with risk factors
            if prediction[0] == 1:
                st.error("High risk of diabetes")
                if glucose > 140:
                    st.warning("⚠️ High glucose level detected")
                if bmi > 30:
                    st.warning("⚠️ High BMI detected")
            else:
                st.success("Low risk of diabetes")
            
            # Show similar cases
            st.write("### Similar Cases from Dataset")
            st.write("The prediction is based on these similar cases:")
            
            similar_df = pd.DataFrame({
                'Age': similar_cases['Age'].round(1),
                'BMI': similar_cases['BMI'].round(1),
                'Glucose': similar_cases['Glucose'].round(1),
                'Blood Pressure': similar_cases['BloodPressure'].round(1),
                'Outcome': ['Diabetic' if o == 1 else 'Non-diabetic' for o in similar_outcomes],
                'Similarity': [f"{(1 - d/d.max())*100:.1f}%" for d in distances]
            })
            st.dataframe(similar_df)
            
            # Show risk analysis
            st.write("### Risk Analysis")
            risk_factors = []
            if glucose > 140: risk_factors.append(f"Glucose ({glucose} mg/dL) is above normal range")
            if bmi > 30: risk_factors.append(f"BMI ({bmi:.1f}) indicates obesity")
            if blood_pressure > 90: risk_factors.append(f"Blood pressure ({blood_pressure} mm Hg) is elevated")
            if dpf > 0.8: risk_factors.append(f"Diabetes pedigree function ({dpf:.2f}) indicates family history")
            
            if risk_factors:
                st.write("Risk factors identified:")
                for factor in risk_factors:
                    st.write(f"β€’ {factor}")
            else:
                st.write("No major risk factors identified")
            
        except Exception as e:
            st.error(f"Error making prediction: {str(e)}")

def heart_disease_prediction():
    # Add home button at the top
    add_home_button()
    
    load_animation()
    st.header("Heart Disease Prediction")
    st.write("Enter measurements to predict heart disease risk")
    
    try:
        model = HeartDiseaseModel.load_model()
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return
    
    col1, col2 = st.columns(2)
    
    with col1:
        age = st.number_input("Age", value=50, min_value=0)
        sex = st.selectbox("Sex", ["Male", "Female"])
        cp = st.selectbox("Chest Pain Type", 
            ["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"])
        trestbps = st.number_input("Resting Blood Pressure (mm Hg)", value=120, min_value=0)
        chol = st.number_input("Serum Cholesterol (mg/dl)", value=200, min_value=0)
        fbs = st.selectbox("Fasting Blood Sugar > 120 mg/dl", ["No", "Yes"])
        restecg = st.selectbox("Resting ECG Results", 
            ["Normal", "ST-T Wave Abnormality", "Left Ventricular Hypertrophy"])
        
    with col2:
        thalach = st.number_input("Maximum Heart Rate", value=150, min_value=0)
        exang = st.selectbox("Exercise Induced Angina", ["No", "Yes"])
        oldpeak = st.number_input("ST Depression by Exercise", value=0.0)
        slope = st.selectbox("Slope of Peak Exercise ST", ["Upsloping", "Flat", "Downsloping"])
        ca = st.number_input("Number of Major Vessels (0-3)", value=0, min_value=0, max_value=3)
        thal = st.selectbox("Thalassemia", ["Normal", "Fixed Defect", "Reversible Defect"])
    
    if st.button("Predict"):
        try:
            # Convert categorical inputs to numerical
            sex_num = 1 if sex == "Male" else 0
            cp_num = ["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"].index(cp)
            fbs_num = 1 if fbs == "Yes" else 0
            restecg_num = ["Normal", "ST-T Wave Abnormality", "Left Ventricular Hypertrophy"].index(restecg)
            exang_num = 1 if exang == "Yes" else 0
            slope_num = ["Upsloping", "Flat", "Downsloping"].index(slope)
            thal_num = ["Normal", "Fixed Defect", "Reversible Defect"].index(thal) + 3
            
            input_data = np.array([
                age, sex_num, cp_num, trestbps, chol, fbs_num, restecg_num,
                thalach, exang_num, oldpeak, slope_num, ca, thal_num
            ]).reshape(1, -1)
            
            prediction, similar_cases, similar_outcomes, distances = model.predict(input_data)
            
            # Show prediction and risk analysis
            if prediction[0] == 1:
                st.error("High risk of heart disease")
                
                # Show specific risk factors
                st.write("### Risk Factors Identified:")
                risk_factors = []
                
                if age > 60:
                    risk_factors.append(f"Age ({age} years) - Higher risk with increasing age")
                if cp_num >= 2:
                    risk_factors.append("Chest Pain Type indicates potential issue")
                if trestbps > 140:
                    risk_factors.append(f"High Blood Pressure ({trestbps} mm Hg)")
                if chol > 240:
                    risk_factors.append(f"High Cholesterol ({chol} mg/dl)")
                if thalach < 120:
                    risk_factors.append(f"Low Maximum Heart Rate ({thalach} bpm)")
                if oldpeak > 2:
                    risk_factors.append(f"Significant ST Depression ({oldpeak})")
                if ca > 0:
                    risk_factors.append(f"Number of Major Vessels: {ca}")
                
                for factor in risk_factors:
                    st.warning(f"⚠️ {factor}")
            else:
                st.success("Low risk of heart disease")
                
                # Show protective factors
                good_factors = []
                if age < 50:
                    good_factors.append(f"Age ({age} years) is in a lower risk category")
                if trestbps < 120:
                    good_factors.append(f"Normal Blood Pressure ({trestbps} mm Hg)")
                if chol < 200:
                    good_factors.append(f"Healthy Cholesterol Level ({chol} mg/dl)")
                
                if good_factors:
                    st.write("### Protective Factors:")
                    for factor in good_factors:
                        st.info(f"βœ“ {factor}")
            
            # Show similar cases
            st.write("### Similar Cases from Dataset")
            st.write("The prediction is based on these similar cases:")
            
            similar_df = pd.DataFrame({
                'Age': similar_cases['age'].round(0),
                'Sex': ['Male' if s == 1 else 'Female' for s in similar_cases['sex']],
                'Blood Pressure': similar_cases['trestbps'].round(0),
                'Cholesterol': similar_cases['chol'].round(0),
                'Max Heart Rate': similar_cases['thalach'].round(0),
                'Outcome': ['High Risk' if o == 1 else 'Low Risk' for o in similar_outcomes],
                'Similarity': [f"{(1 - d/d.max())*100:.1f}%" for d in distances]
            })
            st.dataframe(similar_df)
            
        except Exception as e:
            st.error(f"Error making prediction: {str(e)}")

def parkinsons_prediction():
    # Add home button at the top
    add_home_button()
    
    load_animation()
    st.header("Parkinsons Disease Prediction")
    st.write("Enter the following measurements:")
    
    if not check_model_exists(PARKINSONS_MODEL_PATH):
        st.error("Parkinson's model not found. Please train the model first.")
        if st.button("Train Parkinson's Model"):
            try:
                from train_models import train_parkinsons
                train_parkinsons()
                st.success("Model trained successfully! Please refresh the page.")
            except Exception as e:
                st.error(f"Error training model: {str(e)}")
        return
    
    try:
        model = ParkinsonsModel.load_model()
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return
    
    col1, col2 = st.columns(2)
    
    with col1:
        mdvp_fo = st.number_input("MDVP:Fo(Hz)", min_value=88.333, max_value=260.105, value=120.000, format="%.6f")
        mdvp_fhi = st.number_input("MDVP:Fhi(Hz)", min_value=102.145, max_value=592.030, value=157.000, format="%.6f")
        mdvp_flo = st.number_input("MDVP:Flo(Hz)", min_value=65.476, max_value=239.170, value=75.000, format="%.6f")
        mdvp_jitter = st.number_input("MDVP:Jitter(%)", min_value=0.00168, max_value=0.03316, value=0.00784, format="%.6f")
        mdvp_jitter_abs = st.number_input("MDVP:Jitter(Abs)", min_value=0.000007, max_value=0.000260, value=0.000070, format="%.6f")
        mdvp_rap = st.number_input("MDVP:RAP", min_value=0.00068, max_value=0.02144, value=0.00370, format="%.6f")
        mdvp_ppq = st.number_input("MDVP:PPQ", min_value=0.00092, max_value=0.01958, value=0.00554, format="%.6f")
        jitter_ddp = st.number_input("Jitter:DDP", min_value=0.00204, max_value=0.06433, value=0.01109, format="%.6f")
    
    with col2:
        mdvp_shimmer = st.number_input("MDVP:Shimmer", min_value=0.00954, max_value=0.11908, value=0.04374, format="%.6f")
        mdvp_shimmer_db = st.number_input("MDVP:Shimmer(dB)", min_value=0.085, max_value=1.302, value=0.426, format="%.6f")
        shimmer_apq3 = st.number_input("Shimmer:APQ3", min_value=0.00455, max_value=0.05647, value=0.02182, format="%.6f")
        shimmer_apq5 = st.number_input("Shimmer:APQ5", min_value=0.0057, max_value=0.0794, value=0.03130, format="%.6f")
        mdvp_apq = st.number_input("MDVP:APQ", min_value=0.00719, max_value=0.13778, value=0.02971, format="%.6f")
        shimmer_dda = st.number_input("Shimmer:DDA", min_value=0.01364, max_value=0.16942, value=0.06545, format="%.6f")
        nhr = st.number_input("NHR", min_value=0.00065, max_value=0.31482, value=0.02211, format="%.6f")
        hnr = st.number_input("HNR", min_value=8.441, max_value=33.047, value=21.033, format="%.6f")
        rpde = st.number_input("RPDE", min_value=0.256570, max_value=0.685151, value=0.414783, format="%.6f")
        dfa = st.number_input("DFA", min_value=0.574282, max_value=0.825288, value=0.815285, format="%.6f")
        spread1 = st.number_input("Spread1", min_value= -7.964984, max_value= -2.434031, value= -4.813031, format="%.6f")
        spread2 = st.number_input("Spread2", min_value=0.006274, max_value=0.450493, value=0.266482, format="%.6f")
        d2 = st.number_input("D2", min_value=1.423287, max_value=3.671155, value=2.301442, format="%.6f")
        ppe = st.number_input("PPE", min_value=0.044539, max_value=0.527367, value=0.284654, format="%.6f")
    
    if st.button("Predict"):
        try:
            input_data = np.array([
                mdvp_fo, mdvp_fhi, mdvp_flo, mdvp_jitter, mdvp_jitter_abs,
                mdvp_rap, mdvp_ppq, jitter_ddp, mdvp_shimmer, mdvp_shimmer_db,
                shimmer_apq3, shimmer_apq5, mdvp_apq, shimmer_dda, nhr, hnr,
                rpde, dfa, spread1, spread2, d2, ppe
            ]).reshape(1, -1)
            
            prediction, similar_cases, similar_outcomes, distances = model.predict(input_data)
            
            if prediction[0] == 1:
                st.error("⚠️ High risk of Parkinson's disease")
                st.write("### Risk Factors Identified:")
                risk_factors = []
                if mdvp_jitter > 0.008:
                    risk_factors.append(f"High Jitter ({mdvp_jitter:.5f}%) indicates vocal instability")
                if mdvp_jitter_abs > 0.0004:
                    risk_factors.append(f"High Absolute Jitter ({mdvp_jitter_abs:.5f}) indicates frequency instability")
                if mdvp_shimmer > 0.04:
                    risk_factors.append(f"High Shimmer ({mdvp_shimmer:.5f}) indicates amplitude variations")
                if mdvp_shimmer_db > 0.4:
                    risk_factors.append(f"High Shimmer dB ({mdvp_shimmer_db:.5f}dB) indicates amplitude instability")
                if hnr < 20:
                    risk_factors.append(f"Low HNR ({hnr:.3f}) indicates voice quality issues")
                if nhr > 0.03:
                    risk_factors.append(f"High NHR ({nhr:.5f}) indicates increased noise")
                if rpde > 0.5:
                    risk_factors.append(f"High RPDE ({rpde:.3f}) indicates increased vocal complexity")
                if dfa < 0.65:
                    risk_factors.append(f"Low DFA ({dfa:.3f}) indicates changes in vocal pattern")
                
                for factor in risk_factors:
                    st.warning(f"⚠️ {factor}")
            else:
                st.success("βœ… Low risk of Parkinson's disease")
                good_factors = []
                if mdvp_jitter < 0.006:
                    good_factors.append(f"Normal Jitter ({mdvp_jitter:.5f}%)")
                if mdvp_shimmer < 0.03:
                    good_factors.append(f"Normal Shimmer ({mdvp_shimmer:.5f})")
                if hnr > 22:
                    good_factors.append(f"Good HNR ({hnr:.3f})")
                if nhr < 0.02:
                    good_factors.append(f"Good NHR ({nhr:.5f})")
                
                if good_factors:
                    st.write("### Protective Factors:")
                    for factor in good_factors:
                        st.info(f"βœ“ {factor}")
            
            # Show similar cases
            st.write("### Similar Cases from Dataset")
            similar_df = pd.DataFrame({
                'Jitter(%)': similar_cases['MDVP:Jitter(%)'].round(5),
                'Shimmer': similar_cases['MDVP:Shimmer'].round(5),
                'HNR': similar_cases['HNR'].round(2),
                'RPDE': similar_cases['RPDE'].round(3),
                'DFA': similar_cases['DFA'].round(3),
                'Diagnosis': ['Parkinson\'s' if o == 1 else 'Healthy' for o in similar_outcomes],
                'Similarity': [f"{(1 - d/d.max())*100:.1f}%" for d in distances]
            })
            st.dataframe(similar_df)
            
        except Exception as e:
            st.error(f"Error making prediction: {str(e)}")

def show_patient_history():
    """Display patient history visualization with interactive elements"""
    st.markdown("### πŸ“ˆ Patient History Tracker")
    
    # Add date range selector
    col1, col2 = st.columns(2)
    with col1:
        start_date = st.date_input("From Date", value=datetime(2024, 1, 1))
    with col2:
        end_date = st.date_input("To Date", value=datetime.now())
    
    # Add assessment type filter
    assessment_types = ["All", "Breast Cancer", "Diabetes", "Heart Disease", "Parkinson's"]
    selected_type = st.multiselect("Filter by Assessment Type", assessment_types, default=["All"])
    
    # Mock data for demonstration - Fixed: Ensure all arrays have same length
    num_records = 14  # Define a fixed number of records
    history_data = {
        'Date': pd.date_range(start='2024-01-01', periods=num_records, freq='W'),
        'Risk Score': np.random.uniform(0.2, 0.8, size=num_records),
        'Assessment Type': np.random.choice(assessment_types[1:], size=num_records),
        'Status': np.random.choice(['Normal', 'Warning', 'Critical'], size=num_records),
        'Doctor': np.random.choice(['Dr. Smith', 'Dr. Johnson', 'Dr. Williams'], size=num_records)
    }
    df = pd.DataFrame(history_data)
    
    # Create tabs for different views
    tab1, tab2 = st.tabs(["πŸ“Š Trend Analysis", "πŸ“‹ Detailed Records"])
    
    with tab1:
        # Plot interactive trend
        fig = px.line(df, x='Date', y='Risk Score', color='Assessment Type',
                     title='Risk Score Trends Over Time')
        fig.update_layout(height=400)
        st.plotly_chart(fig, use_container_width=True)
        
        # Add summary metrics
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("Average Risk Score", f"{df['Risk Score'].mean():.2f}", 
                     delta=f"{(df['Risk Score'].iloc[-1] - df['Risk Score'].iloc[0]):.2f}")
        with col2:
            st.metric("Assessments", len(df), delta="↑2 from last month")
        with col3:
            st.metric("Critical Alerts", len(df[df['Status'] == 'Critical']), 
                     delta="-1 from last month")
    
    with tab2:
        # Add search and filter options
        search = st.text_input("Search records...")
        filtered_df = df[df.astype(str).apply(lambda x: x.str.contains(search, case=False)).any(axis=1)]
        
        # Display detailed records with styling
        st.dataframe(
            filtered_df.style.apply(lambda x: ['background-color: #ffcccc' if v == 'Critical' 
                                             else 'background-color: #ffffcc' if v == 'Warning'
                                             else '' for v in x], subset=['Status'])
        )

def export_report():
    """Generate and export comprehensive assessment report"""
    st.markdown("### πŸ“„ Export Assessment Report")
    
    # Report configuration
    col1, col2 = st.columns(2)
    with col1:
        report_format = st.selectbox(
            "Report Format",
            ["PDF", "CSV", "JSON", "Excel"]
        )
        include_graphs = st.checkbox("Include Visualizations", value=True)
    with col2:
        report_type = st.selectbox(
            "Report Type",
            ["Summary", "Detailed", "Technical"]
        )
        include_recommendations = st.checkbox("Include Recommendations", value=True)
    
    # Generate report
    if st.button("Generate Report", type="primary"):
        with st.spinner("Generating comprehensive report..."):
            # Simulate report generation
            progress_bar = st.progress(0)
            for i in range(100):
                time.sleep(0.01)
                progress_bar.progress(i + 1)
            
            # Show success message
            st.success(f"Report generated successfully in {report_format} format!")
            
            # Provide download option
            if report_format == "PDF":
                mime = "application/pdf"
            elif report_format == "CSV":
                mime = "text/csv"
            elif report_format == "JSON":
                mime = "application/json"
            else:
                mime = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
            
            st.download_button(
                label=f"πŸ“₯ Download {report_format} Report",
                data=b"Sample report data",  # Replace with actual report generation
                file_name=f"medical_report_{datetime.now().strftime('%Y%m%d')}_{report_type.lower()}.{report_format.lower()}",
                mime=mime,
                key="download_report"
            )

def show_risk_factors_analysis():
    """Display comprehensive risk factors analysis with interactive elements"""
    st.markdown("### πŸ” Risk Factors Analysis")
    
    # Create tabs for different analyses
    tab1, tab2 = st.tabs(["πŸ“Š Risk Factor Impact", "πŸ”„ Correlation Analysis"])
    
    with tab1:
        # Mock data
        risk_factors = {
            'Factor': ['Age', 'BMI', 'Blood Pressure', 'Glucose Level', 'Family History',
                      'Smoking', 'Physical Activity', 'Diet', 'Stress Level'],
            'Impact': [0.8, 0.6, 0.7, 0.9, 0.5, 0.65, 0.55, 0.45, 0.75],
            'Category': ['Demographics', 'Physical', 'Physical', 'Medical', 'Medical',
                        'Lifestyle', 'Lifestyle', 'Lifestyle', 'Lifestyle']
        }
        df = pd.DataFrame(risk_factors)
        
        # Add category filter
        categories = ['All'] + list(df['Category'].unique())
        selected_category = st.selectbox("Filter by Category", categories)
        
        if selected_category != 'All':
            df_filtered = df[df['Category'] == selected_category]
        else:
            df_filtered = df
        
        # Create interactive bar chart
        fig = px.bar(df_filtered, x='Factor', y='Impact', color='Category',
                    title='Risk Factors Impact Analysis',
                    labels={'Impact': 'Impact Score (0-1)'})
        st.plotly_chart(fig, use_container_width=True)
    
    with tab2:
        # Create correlation matrix visualization
        correlation_data = np.random.rand(len(df), len(df))
        fig = px.imshow(correlation_data,
                       labels=dict(x="Risk Factors", y="Risk Factors"),
                       x=df['Factor'],
                       y=df['Factor'],
                       title="Risk Factors Correlation Matrix")
        st.plotly_chart(fig, use_container_width=True)

def show_recommendations():
    """Display personalized health recommendations with interactive elements"""
    st.markdown("### πŸ’‘ Personalized Recommendations")
    
    # Add risk profile selector
    risk_profile = st.select_slider(
        "Risk Profile",
        options=["Low", "Moderate", "High"],
        value="Moderate"
    )
    
    # Recommendations based on risk profile
    recommendations = {
        "Lifestyle Changes": {
            "Low": [
                "Maintain regular exercise routine",
                "Continue balanced diet",
                "Regular sleep schedule"
            ],
            "Moderate": [
                "Increase exercise to 45 minutes daily",
                "Reduce processed food intake",
                "Improve sleep quality"
            ],
            "High": [
                "Structured exercise program with supervision",
                "Strict dietary guidelines",
                "Sleep monitoring and improvement"
            ]
        },
        "Medical Follow-up": {
            "Low": [
                "Annual check-ups",
                "Regular blood pressure monitoring",
                "Basic health screenings"
            ],
            "Moderate": [
                "Semi-annual check-ups",
                "Monthly blood pressure monitoring",
                "Comprehensive screenings"
            ],
            "High": [
                "Quarterly check-ups",
                "Weekly blood pressure monitoring",
                "Advanced health screenings"
            ]
        },
        "Risk Management": {
            "Low": [
                "Basic health monitoring",
                "Stress management awareness",
                "General health education"
            ],
            "Moderate": [
                "Regular health monitoring",
                "Active stress management",
                "Specific health education"
            ],
            "High": [
                "Intensive health monitoring",
                "Professional stress management",
                "Specialized health education"
            ]
        }
    }
    
    # Display recommendations with expandable sections
    for category, risk_levels in recommendations.items():
        with st.expander(f"πŸ“Œ {category}", expanded=True):
            for item in risk_levels[risk_profile]:
                st.markdown(f"β€’ {item}")
            
            # Add progress tracking
            if st.checkbox(f"Track {category.lower()} progress", key=category):
                st.slider(f"{category} Adherence", 0, 100, 50, key=f"adherence_{category}")
                st.progress(50)

def show_trends_analysis():
    """Display comprehensive health trends analysis"""
    st.markdown("### πŸ“Š Health Trends Analysis")
    
    # Date range selector
    col1, col2 = st.columns(2)
    with col1:
        start_date = st.date_input("Start Date", value=datetime(2024, 1, 1), key="trends_start")
    with col2:
        end_date = st.date_input("End Date", value=datetime.now(), key="trends_end")
    
    # Mock data
    dates = pd.date_range(start='2024-01-01', end='2024-04-01', freq='D')
    trends_data = {
        'Date': dates,
        'Blood Pressure': np.random.normal(120, 5, len(dates)),
        'Glucose Level': np.random.normal(100, 3, len(dates)),
        'BMI': np.random.normal(25, 0.5, len(dates)),
        'Cholesterol': np.random.normal(180, 10, len(dates)),
        'Heart Rate': np.random.normal(75, 3, len(dates))
    }
    df = pd.DataFrame(trends_data)
    
    # Metric selector
    metrics = list(df.columns[1:])
    selected_metrics = st.multiselect("Select metrics to analyze", metrics, default=[metrics[0]])
    
    if selected_metrics:
        # Create interactive line chart
        fig = px.line(df, x='Date', y=selected_metrics,
                     title='Health Metrics Trends Over Time')
        fig.update_layout(height=400)
        st.plotly_chart(fig, use_container_width=True)
        
        # Add statistical analysis
        st.markdown("#### Statistical Analysis")
        col1, col2, col3 = st.columns(3)
        for metric in selected_metrics:
            with col1:
                st.metric(f"{metric} Average", 
                         f"{df[metric].mean():.1f}",
                         delta=f"{df[metric].iloc[-1] - df[metric].iloc[0]:.1f}")
            with col2:
                st.metric(f"{metric} Min",
                         f"{df[metric].min():.1f}")
            with col3:
                st.metric(f"{metric} Max",
                         f"{df[metric].max():.1f}")

def compare_assessments():
    """Compare different assessment results"""
    st.markdown("### πŸ”„ Compare Assessments")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("#### Previous Assessment")
        st.metric(label="Risk Score", value="75%", delta="-15%")
        st.date_input("Assessment Date", value=datetime(2024, 1, 1))
        
    with col2:
        st.markdown("#### Current Assessment")
        st.metric(label="Risk Score", value="60%", delta="-5%")
        st.date_input("Assessment Date", value=datetime.now())

def main():
    # Initialize session state if not exists
    if "page" not in st.session_state:
        st.session_state.page = "Home"
    
    # Sidebar
    with st.sidebar:
        st.image("https://img.icons8.com/color/96/000000/hospital-2.png", width=100)
        st.title("Medical AI Assistant")
        st.caption("v1.0.0")
        
        # Navigation
        pages = {
            "🏠 Home": "Home",
            "πŸ”¬ Breast Cancer": "Breast Cancer",
            "🩺 Diabetes": "Diabetes",
            "❀️ Heart Disease": "Heart Disease",
            "🧠 Parkinson's Disease": "Parkinson's Disease"
        }
        
        # Get current page index
        current_page = st.session_state.page
        current_key = next(k for k, v in pages.items() if v == current_page)
        
        # Navigation radio buttons
        selected = st.radio(
            "🧭 Navigation",
            list(pages.keys()),
            index=list(pages.keys()).index(current_key)
        )
        
        # Update page when selection changes
        if pages[selected] != st.session_state.page:
            st.session_state.page = pages[selected]
    
    # Main content routing
    try:
        if st.session_state.page == "Home":
            home_page()
        elif st.session_state.page == "Breast Cancer":
            breast_cancer_prediction()
        elif st.session_state.page == "Diabetes":
            diabetes_prediction()
        elif st.session_state.page == "Heart Disease":
            heart_disease_prediction()
        elif st.session_state.page == "Parkinson's Disease":
            parkinsons_prediction()
    except Exception as e:
        st.error(f"Error loading page: {str(e)}")
        st.session_state.page = "Home"

if __name__ == "__main__":
    main()