File size: 5,802 Bytes
a8b81f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from .base_model import BaseModel
from ..config import PARKINSONS_MODEL_PATH, RANDOM_STATE, TEST_SIZE
import numpy as np
import pandas as pd

class ParkinsonsModel(BaseModel):
    def __init__(self):
        super().__init__(PARKINSONS_MODEL_PATH)
        self.model = KNeighborsClassifier(
            n_neighbors=5,  # Increased for more robust predictions
            weights='distance',
            metric='euclidean'  # Changed to euclidean for better distance measurement
        )
        self.feature_names = [
            'MDVP:Fo(Hz)', 'MDVP:Fhi(Hz)', 'MDVP:Flo(Hz)', 'MDVP:Jitter(%)',
            'MDVP:Jitter(Abs)', 'MDVP:RAP', 'MDVP:PPQ', 'Jitter:DDP',
            'MDVP:Shimmer', 'MDVP:Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
            'MDVP:APQ', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA',
            'spread1', 'spread2', 'D2', 'PPE'
        ]
        self.X_train = None
        self.y_train = None
        self.scaler = None
        
        # Feature ranges from dataset analysis
        self.feature_ranges = {
            'MDVP:Fo(Hz)': (88.333, 260.105),
            'MDVP:Fhi(Hz)': (102.145, 592.030),
            'MDVP:Flo(Hz)': (65.476, 239.170),
            'MDVP:Jitter(%)': (0.001, 0.033),
            'MDVP:Shimmer': (0.009, 0.119),
            'HNR': (8.441, 33.047),
            'RPDE': (0.256, 0.685),
            'DFA': (0.574, 0.825),
            'spread1': (-7.968984, -2.434031),
            'spread2': (0.006, 0.527),
            'PPE': (0.044, 0.527)
        }
        
        # Add feature weights
        self.feature_weights = {
            'MDVP:Fo(Hz)': 1.0,
            'MDVP:Fhi(Hz)': 1.0,
            'MDVP:Flo(Hz)': 1.0,
            'MDVP:Jitter(%)': 2.0,
            'MDVP:Jitter(Abs)': 1.5,
            'MDVP:RAP': 1.5,
            'MDVP:PPQ': 1.5,
            'Jitter:DDP': 1.5,
            'MDVP:Shimmer': 2.0,
            'MDVP:Shimmer(dB)': 1.5,
            'Shimmer:APQ3': 1.5,
            'Shimmer:APQ5': 1.5,
            'MDVP:APQ': 1.5,
            'Shimmer:DDA': 1.5,
            'NHR': 1.8,
            'HNR': 1.8,
            'RPDE': 1.5,
            'DFA': 1.5,
            'spread1': 1.2,
            'spread2': 1.2,
            'D2': 1.2,
            'PPE': 1.8
        }
        
    def is_input_valid(self, X):
        """Check if input values are within expected ranges"""
        X_df = pd.DataFrame(X, columns=self.feature_names)
        for feature, (min_val, max_val) in self.feature_ranges.items():
            if feature in X_df.columns:
                value = X_df[feature].iloc[0]
                # Extend the acceptable range by 20% on both sides
                range_width = max_val - min_val
                extended_min = min_val - (range_width * 0.2)
                extended_max = max_val + (range_width * 0.2)
                if value < extended_min or value > extended_max:
                    return False, f"{feature} value ({value:.3f}) is outside expected range ({min_val:.3f} - {max_val:.3f})"
        return True, ""

    def predict(self, X):
        # Validate input
        is_valid, message = self.is_input_valid(X)
        if not is_valid:
            raise ValueError(f"Invalid input: {message}")
            
        if self.scaler:
            X = self.scaler.transform(X)
        
        X = pd.DataFrame(X, columns=self.feature_names)
        
        # Apply feature weights
        for feature, weight in self.feature_weights.items():
            if feature in X.columns:
                X[feature] = X[feature] * weight
        
        # Get nearest neighbors
        distances, indices = self.model.kneighbors(X)
        
        # Convert X_train to DataFrame if it's a numpy array
        if isinstance(self.X_train, np.ndarray):
            self.X_train = pd.DataFrame(self.X_train, columns=self.feature_names)
        
        # Get similar cases
        similar_cases = self.X_train.iloc[indices[0]]
        similar_outcomes = pd.Series(self.y_train).iloc[indices[0]]  # Convert y_train to Series
        
        # Calculate confidence score based on distances
        max_distance = np.max(distances)
        confidence_scores = 1 - (distances[0] / max_distance)
        
        # Weight the predictions by confidence
        weighted_pred = np.average(similar_outcomes, weights=confidence_scores)
        
        # Make final prediction
        prediction = np.array([1 if weighted_pred >= 0.5 else 0])
        
        return prediction, similar_cases, similar_outcomes, distances[0]
    
    def train(self, X, y):
        # Convert input to DataFrame if it's not already
        if not isinstance(X, pd.DataFrame):
            X = pd.DataFrame(X, columns=self.feature_names)
        
        # Apply feature weights
        X_weighted = X.copy()
        for feature, weight in self.feature_weights.items():
            if feature in X.columns:
                X_weighted[feature] = X_weighted[feature] * weight
        
        X_train, X_test, y_train, y_test = train_test_split(
            X_weighted, y, test_size=TEST_SIZE, random_state=RANDOM_STATE,
            stratify=y
        )
        
        # Store as DataFrames/Series
        self.X_train = pd.DataFrame(X_train, columns=self.feature_names)
        self.y_train = pd.Series(y_train)
        
        self.model.fit(X_train, y_train)
        return self.evaluate(X_train, X_test, y_train, y_test)
    
    def evaluate(self, X_train, X_test, y_train, y_test):
        train_accuracy = accuracy_score(y_train, self.model.predict(X_train))
        test_accuracy = accuracy_score(y_test, self.model.predict(X_test))
        return train_accuracy, test_accuracy