# CondInst > [CondInst: Conditional Convolutions for Instance > Segmentation](https://arxiv.org/pdf/2003.05664.pdf) ## Abstract We propose a simple yet effective instance segmentation framework, termed CondInst (conditional convolutions for instance segmentation). Top-performing instance segmentation methods such as Mask R-CNN rely on ROI operations (typically ROIPool or ROIAlign) to obtain the final instance masks. In contrast, we propose to solve instance segmentation from a new perspective. Instead of using instancewise ROIs as inputs to a network of fixed weights, we employ dynamic instance-aware networks, conditioned on instances. CondInst enjoys two advantages: 1) Instance segmentation is solved by a fully convolutional network, eliminating the need for ROI cropping and feature alignment. 2\) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference. We demonstrate a simpler instance segmentation method that can achieve improved performance in both accuracy and inference speed. On the COCO dataset, we outperform a few recent methods including welltuned Mask R-CNN baselines, without longer training schedules needed.
## Results and Models | Backbone | Style | MS train | Lr schd | bbox AP | mask AP | Config | Download | | :------: | :-----: | :------: | :-----: | :-----: | :-----: | :-------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | R-50 | pytorch | Y | 1x | 39.8 | 36.0 | [config](./condinst_r50_fpn_ms-poly-90k_coco_instance.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/condinst/condinst_r50_fpn_ms-poly-90k_coco_instance/condinst_r50_fpn_ms-poly-90k_coco_instance_20221129_125223-4c186406.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/condinst/condinst_r50_fpn_ms-poly-90k_coco_instance/condinst_r50_fpn_ms-poly-90k_coco_instance_20221129_125223.json) | ## Citation ```latex @inproceedings{tian2020conditional, title = {Conditional Convolutions for Instance Segmentation}, author = {Tian, Zhi and Shen, Chunhua and Chen, Hao}, booktitle = {Proc. Eur. Conf. Computer Vision (ECCV)}, year = {2020} } ```