|
|
|
from typing import List, Tuple, Union |
|
|
|
import mmcv |
|
import numpy as np |
|
from mmengine.utils import is_str |
|
|
|
|
|
def palette_val(palette: List[tuple]) -> List[tuple]: |
|
"""Convert palette to matplotlib palette. |
|
|
|
Args: |
|
palette (List[tuple]): A list of color tuples. |
|
|
|
Returns: |
|
List[tuple[float]]: A list of RGB matplotlib color tuples. |
|
""" |
|
new_palette = [] |
|
for color in palette: |
|
color = [c / 255 for c in color] |
|
new_palette.append(tuple(color)) |
|
return new_palette |
|
|
|
|
|
def get_palette(palette: Union[List[tuple], str, tuple], |
|
num_classes: int) -> List[Tuple[int]]: |
|
"""Get palette from various inputs. |
|
|
|
Args: |
|
palette (list[tuple] | str | tuple): palette inputs. |
|
num_classes (int): the number of classes. |
|
|
|
Returns: |
|
list[tuple[int]]: A list of color tuples. |
|
""" |
|
assert isinstance(num_classes, int) |
|
|
|
if isinstance(palette, list): |
|
dataset_palette = palette |
|
elif isinstance(palette, tuple): |
|
dataset_palette = [palette] * num_classes |
|
elif palette == 'random' or palette is None: |
|
state = np.random.get_state() |
|
|
|
np.random.seed(42) |
|
palette = np.random.randint(0, 256, size=(num_classes, 3)) |
|
np.random.set_state(state) |
|
dataset_palette = [tuple(c) for c in palette] |
|
elif palette == 'coco': |
|
from mmdet.datasets import CocoDataset, CocoPanopticDataset |
|
dataset_palette = CocoDataset.METAINFO['palette'] |
|
if len(dataset_palette) < num_classes: |
|
dataset_palette = CocoPanopticDataset.METAINFO['palette'] |
|
elif palette == 'citys': |
|
from mmdet.datasets import CityscapesDataset |
|
dataset_palette = CityscapesDataset.METAINFO['palette'] |
|
elif palette == 'voc': |
|
from mmdet.datasets import VOCDataset |
|
dataset_palette = VOCDataset.METAINFO['palette'] |
|
elif is_str(palette): |
|
dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes |
|
else: |
|
raise TypeError(f'Invalid type for palette: {type(palette)}') |
|
|
|
assert len(dataset_palette) >= num_classes, \ |
|
'The length of palette should not be less than `num_classes`.' |
|
return dataset_palette |
|
|
|
|
|
def _get_adaptive_scales(areas: np.ndarray, |
|
min_area: int = 800, |
|
max_area: int = 30000) -> np.ndarray: |
|
"""Get adaptive scales according to areas. |
|
|
|
The scale range is [0.5, 1.0]. When the area is less than |
|
``min_area``, the scale is 0.5 while the area is larger than |
|
``max_area``, the scale is 1.0. |
|
|
|
Args: |
|
areas (ndarray): The areas of bboxes or masks with the |
|
shape of (n, ). |
|
min_area (int): Lower bound areas for adaptive scales. |
|
Defaults to 800. |
|
max_area (int): Upper bound areas for adaptive scales. |
|
Defaults to 30000. |
|
|
|
Returns: |
|
ndarray: The adaotive scales with the shape of (n, ). |
|
""" |
|
scales = 0.5 + (areas - min_area) / (max_area - min_area) |
|
scales = np.clip(scales, 0.5, 1.0) |
|
return scales |
|
|
|
|
|
def jitter_color(color: tuple) -> tuple: |
|
"""Randomly jitter the given color in order to better distinguish instances |
|
with the same class. |
|
|
|
Args: |
|
color (tuple): The RGB color tuple. Each value is between [0, 255]. |
|
|
|
Returns: |
|
tuple: The jittered color tuple. |
|
""" |
|
jitter = np.random.rand(3) |
|
jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 |
|
color = np.clip(jitter + color, 0, 255).astype(np.uint8) |
|
return tuple(color) |
|
|