|
|
|
import torch |
|
from mmengine.structures import InstanceData |
|
|
|
from mmdet.registry import TASK_UTILS |
|
from ..assigners import AssignResult |
|
from .base_sampler import BaseSampler |
|
from .sampling_result import SamplingResult |
|
|
|
|
|
@TASK_UTILS.register_module() |
|
class PseudoSampler(BaseSampler): |
|
"""A pseudo sampler that does not do sampling actually.""" |
|
|
|
def __init__(self, **kwargs): |
|
pass |
|
|
|
def _sample_pos(self, **kwargs): |
|
"""Sample positive samples.""" |
|
raise NotImplementedError |
|
|
|
def _sample_neg(self, **kwargs): |
|
"""Sample negative samples.""" |
|
raise NotImplementedError |
|
|
|
def sample(self, assign_result: AssignResult, pred_instances: InstanceData, |
|
gt_instances: InstanceData, *args, **kwargs): |
|
"""Directly returns the positive and negative indices of samples. |
|
|
|
Args: |
|
assign_result (:obj:`AssignResult`): Bbox assigning results. |
|
pred_instances (:obj:`InstanceData`): Instances of model |
|
predictions. It includes ``priors``, and the priors can |
|
be anchors, points, or bboxes predicted by the model, |
|
shape(n, 4). |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
|
|
Returns: |
|
:obj:`SamplingResult`: sampler results |
|
""" |
|
gt_bboxes = gt_instances.bboxes |
|
priors = pred_instances.priors |
|
|
|
pos_inds = torch.nonzero( |
|
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() |
|
neg_inds = torch.nonzero( |
|
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() |
|
|
|
gt_flags = priors.new_zeros(priors.shape[0], dtype=torch.uint8) |
|
sampling_result = SamplingResult( |
|
pos_inds=pos_inds, |
|
neg_inds=neg_inds, |
|
priors=priors, |
|
gt_bboxes=gt_bboxes, |
|
assign_result=assign_result, |
|
gt_flags=gt_flags, |
|
avg_factor_with_neg=False) |
|
return sampling_result |
|
|