|
|
|
import warnings |
|
from typing import Optional, Sequence, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import Tensor |
|
|
|
from mmdet.registry import TASK_UTILS |
|
from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes, get_box_tensor |
|
from .base_bbox_coder import BaseBBoxCoder |
|
|
|
|
|
@TASK_UTILS.register_module() |
|
class DeltaXYWHBBoxCoder(BaseBBoxCoder): |
|
"""Delta XYWH BBox coder. |
|
|
|
Following the practice in `R-CNN <https://arxiv.org/abs/1311.2524>`_, |
|
this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and |
|
decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2). |
|
|
|
Args: |
|
target_means (Sequence[float]): Denormalizing means of target for |
|
delta coordinates |
|
target_stds (Sequence[float]): Denormalizing standard deviation of |
|
target for delta coordinates |
|
clip_border (bool, optional): Whether clip the objects outside the |
|
border of the image. Defaults to True. |
|
add_ctr_clamp (bool): Whether to add center clamp, when added, the |
|
predicted box is clamped is its center is too far away from |
|
the original anchor's center. Only used by YOLOF. Default False. |
|
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. |
|
Default 32. |
|
""" |
|
|
|
def __init__(self, |
|
target_means: Sequence[float] = (0., 0., 0., 0.), |
|
target_stds: Sequence[float] = (1., 1., 1., 1.), |
|
clip_border: bool = True, |
|
add_ctr_clamp: bool = False, |
|
ctr_clamp: int = 32, |
|
**kwargs) -> None: |
|
super().__init__(**kwargs) |
|
self.means = target_means |
|
self.stds = target_stds |
|
self.clip_border = clip_border |
|
self.add_ctr_clamp = add_ctr_clamp |
|
self.ctr_clamp = ctr_clamp |
|
|
|
def encode(self, bboxes: Union[Tensor, BaseBoxes], |
|
gt_bboxes: Union[Tensor, BaseBoxes]) -> Tensor: |
|
"""Get box regression transformation deltas that can be used to |
|
transform the ``bboxes`` into the ``gt_bboxes``. |
|
|
|
Args: |
|
bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, |
|
e.g., object proposals. |
|
gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the |
|
transformation, e.g., ground-truth boxes. |
|
|
|
Returns: |
|
torch.Tensor: Box transformation deltas |
|
""" |
|
bboxes = get_box_tensor(bboxes) |
|
gt_bboxes = get_box_tensor(gt_bboxes) |
|
assert bboxes.size(0) == gt_bboxes.size(0) |
|
assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 |
|
encoded_bboxes = bbox2delta(bboxes, gt_bboxes, self.means, self.stds) |
|
return encoded_bboxes |
|
|
|
def decode( |
|
self, |
|
bboxes: Union[Tensor, BaseBoxes], |
|
pred_bboxes: Tensor, |
|
max_shape: Optional[Union[Sequence[int], Tensor, |
|
Sequence[Sequence[int]]]] = None, |
|
wh_ratio_clip: Optional[float] = 16 / 1000 |
|
) -> Union[Tensor, BaseBoxes]: |
|
"""Apply transformation `pred_bboxes` to `boxes`. |
|
|
|
Args: |
|
bboxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes. Shape |
|
(B, N, 4) or (N, 4) |
|
pred_bboxes (Tensor): Encoded offsets with respect to each roi. |
|
Has shape (B, N, num_classes * 4) or (B, N, 4) or |
|
(N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H |
|
when rois is a grid of anchors.Offset encoding follows [1]_. |
|
max_shape (Sequence[int] or torch.Tensor or Sequence[ |
|
Sequence[int]],optional): Maximum bounds for boxes, specifies |
|
(H, W, C) or (H, W). If bboxes shape is (B, N, 4), then |
|
the max_shape should be a Sequence[Sequence[int]] |
|
and the length of max_shape should also be B. |
|
wh_ratio_clip (float, optional): The allowed ratio between |
|
width and height. |
|
|
|
Returns: |
|
Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. |
|
""" |
|
bboxes = get_box_tensor(bboxes) |
|
assert pred_bboxes.size(0) == bboxes.size(0) |
|
if pred_bboxes.ndim == 3: |
|
assert pred_bboxes.size(1) == bboxes.size(1) |
|
|
|
if pred_bboxes.ndim == 2 and not torch.onnx.is_in_onnx_export(): |
|
|
|
decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means, |
|
self.stds, max_shape, wh_ratio_clip, |
|
self.clip_border, self.add_ctr_clamp, |
|
self.ctr_clamp) |
|
else: |
|
if pred_bboxes.ndim == 3 and not torch.onnx.is_in_onnx_export(): |
|
warnings.warn( |
|
'DeprecationWarning: onnx_delta2bbox is deprecated ' |
|
'in the case of batch decoding and non-ONNX, ' |
|
'please use “delta2bbox” instead. In order to improve ' |
|
'the decoding speed, the batch function will no ' |
|
'longer be supported. ') |
|
decoded_bboxes = onnx_delta2bbox(bboxes, pred_bboxes, self.means, |
|
self.stds, max_shape, |
|
wh_ratio_clip, self.clip_border, |
|
self.add_ctr_clamp, |
|
self.ctr_clamp) |
|
|
|
if self.use_box_type: |
|
assert decoded_bboxes.size(-1) == 4, \ |
|
('Cannot warp decoded boxes with box type when decoded boxes' |
|
'have shape of (N, num_classes * 4)') |
|
decoded_bboxes = HorizontalBoxes(decoded_bboxes) |
|
return decoded_bboxes |
|
|
|
|
|
def bbox2delta( |
|
proposals: Tensor, |
|
gt: Tensor, |
|
means: Sequence[float] = (0., 0., 0., 0.), |
|
stds: Sequence[float] = (1., 1., 1., 1.) |
|
) -> Tensor: |
|
"""Compute deltas of proposals w.r.t. gt. |
|
|
|
We usually compute the deltas of x, y, w, h of proposals w.r.t ground |
|
truth bboxes to get regression target. |
|
This is the inverse function of :func:`delta2bbox`. |
|
|
|
Args: |
|
proposals (Tensor): Boxes to be transformed, shape (N, ..., 4) |
|
gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4) |
|
means (Sequence[float]): Denormalizing means for delta coordinates |
|
stds (Sequence[float]): Denormalizing standard deviation for delta |
|
coordinates |
|
|
|
Returns: |
|
Tensor: deltas with shape (N, 4), where columns represent dx, dy, |
|
dw, dh. |
|
""" |
|
assert proposals.size() == gt.size() |
|
|
|
proposals = proposals.float() |
|
gt = gt.float() |
|
px = (proposals[..., 0] + proposals[..., 2]) * 0.5 |
|
py = (proposals[..., 1] + proposals[..., 3]) * 0.5 |
|
pw = proposals[..., 2] - proposals[..., 0] |
|
ph = proposals[..., 3] - proposals[..., 1] |
|
|
|
gx = (gt[..., 0] + gt[..., 2]) * 0.5 |
|
gy = (gt[..., 1] + gt[..., 3]) * 0.5 |
|
gw = gt[..., 2] - gt[..., 0] |
|
gh = gt[..., 3] - gt[..., 1] |
|
|
|
dx = (gx - px) / pw |
|
dy = (gy - py) / ph |
|
dw = torch.log(gw / pw) |
|
dh = torch.log(gh / ph) |
|
deltas = torch.stack([dx, dy, dw, dh], dim=-1) |
|
|
|
means = deltas.new_tensor(means).unsqueeze(0) |
|
stds = deltas.new_tensor(stds).unsqueeze(0) |
|
deltas = deltas.sub_(means).div_(stds) |
|
|
|
return deltas |
|
|
|
|
|
def delta2bbox(rois: Tensor, |
|
deltas: Tensor, |
|
means: Sequence[float] = (0., 0., 0., 0.), |
|
stds: Sequence[float] = (1., 1., 1., 1.), |
|
max_shape: Optional[Union[Sequence[int], Tensor, |
|
Sequence[Sequence[int]]]] = None, |
|
wh_ratio_clip: float = 16 / 1000, |
|
clip_border: bool = True, |
|
add_ctr_clamp: bool = False, |
|
ctr_clamp: int = 32) -> Tensor: |
|
"""Apply deltas to shift/scale base boxes. |
|
|
|
Typically the rois are anchor or proposed bounding boxes and the deltas are |
|
network outputs used to shift/scale those boxes. |
|
This is the inverse function of :func:`bbox2delta`. |
|
|
|
Args: |
|
rois (Tensor): Boxes to be transformed. Has shape (N, 4). |
|
deltas (Tensor): Encoded offsets relative to each roi. |
|
Has shape (N, num_classes * 4) or (N, 4). Note |
|
N = num_base_anchors * W * H, when rois is a grid of |
|
anchors. Offset encoding follows [1]_. |
|
means (Sequence[float]): Denormalizing means for delta coordinates. |
|
Default (0., 0., 0., 0.). |
|
stds (Sequence[float]): Denormalizing standard deviation for delta |
|
coordinates. Default (1., 1., 1., 1.). |
|
max_shape (tuple[int, int]): Maximum bounds for boxes, specifies |
|
(H, W). Default None. |
|
wh_ratio_clip (float): Maximum aspect ratio for boxes. Default |
|
16 / 1000. |
|
clip_border (bool, optional): Whether clip the objects outside the |
|
border of the image. Default True. |
|
add_ctr_clamp (bool): Whether to add center clamp. When set to True, |
|
the center of the prediction bounding box will be clamped to |
|
avoid being too far away from the center of the anchor. |
|
Only used by YOLOF. Default False. |
|
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. |
|
Default 32. |
|
|
|
Returns: |
|
Tensor: Boxes with shape (N, num_classes * 4) or (N, 4), where 4 |
|
represent tl_x, tl_y, br_x, br_y. |
|
|
|
References: |
|
.. [1] https://arxiv.org/abs/1311.2524 |
|
|
|
Example: |
|
>>> rois = torch.Tensor([[ 0., 0., 1., 1.], |
|
>>> [ 0., 0., 1., 1.], |
|
>>> [ 0., 0., 1., 1.], |
|
>>> [ 5., 5., 5., 5.]]) |
|
>>> deltas = torch.Tensor([[ 0., 0., 0., 0.], |
|
>>> [ 1., 1., 1., 1.], |
|
>>> [ 0., 0., 2., -1.], |
|
>>> [ 0.7, -1.9, -0.5, 0.3]]) |
|
>>> delta2bbox(rois, deltas, max_shape=(32, 32, 3)) |
|
tensor([[0.0000, 0.0000, 1.0000, 1.0000], |
|
[0.1409, 0.1409, 2.8591, 2.8591], |
|
[0.0000, 0.3161, 4.1945, 0.6839], |
|
[5.0000, 5.0000, 5.0000, 5.0000]]) |
|
""" |
|
num_bboxes, num_classes = deltas.size(0), deltas.size(1) // 4 |
|
if num_bboxes == 0: |
|
return deltas |
|
|
|
deltas = deltas.reshape(-1, 4) |
|
|
|
means = deltas.new_tensor(means).view(1, -1) |
|
stds = deltas.new_tensor(stds).view(1, -1) |
|
denorm_deltas = deltas * stds + means |
|
|
|
dxy = denorm_deltas[:, :2] |
|
dwh = denorm_deltas[:, 2:] |
|
|
|
|
|
rois_ = rois.repeat(1, num_classes).reshape(-1, 4) |
|
pxy = ((rois_[:, :2] + rois_[:, 2:]) * 0.5) |
|
pwh = (rois_[:, 2:] - rois_[:, :2]) |
|
|
|
dxy_wh = pwh * dxy |
|
|
|
max_ratio = np.abs(np.log(wh_ratio_clip)) |
|
if add_ctr_clamp: |
|
dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp) |
|
dwh = torch.clamp(dwh, max=max_ratio) |
|
else: |
|
dwh = dwh.clamp(min=-max_ratio, max=max_ratio) |
|
|
|
gxy = pxy + dxy_wh |
|
gwh = pwh * dwh.exp() |
|
x1y1 = gxy - (gwh * 0.5) |
|
x2y2 = gxy + (gwh * 0.5) |
|
bboxes = torch.cat([x1y1, x2y2], dim=-1) |
|
if clip_border and max_shape is not None: |
|
bboxes[..., 0::2].clamp_(min=0, max=max_shape[1]) |
|
bboxes[..., 1::2].clamp_(min=0, max=max_shape[0]) |
|
bboxes = bboxes.reshape(num_bboxes, -1) |
|
return bboxes |
|
|
|
|
|
def onnx_delta2bbox(rois: Tensor, |
|
deltas: Tensor, |
|
means: Sequence[float] = (0., 0., 0., 0.), |
|
stds: Sequence[float] = (1., 1., 1., 1.), |
|
max_shape: Optional[Union[Sequence[int], Tensor, |
|
Sequence[Sequence[int]]]] = None, |
|
wh_ratio_clip: float = 16 / 1000, |
|
clip_border: Optional[bool] = True, |
|
add_ctr_clamp: bool = False, |
|
ctr_clamp: int = 32) -> Tensor: |
|
"""Apply deltas to shift/scale base boxes. |
|
|
|
Typically the rois are anchor or proposed bounding boxes and the deltas are |
|
network outputs used to shift/scale those boxes. |
|
This is the inverse function of :func:`bbox2delta`. |
|
|
|
Args: |
|
rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4) |
|
deltas (Tensor): Encoded offsets with respect to each roi. |
|
Has shape (B, N, num_classes * 4) or (B, N, 4) or |
|
(N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H |
|
when rois is a grid of anchors.Offset encoding follows [1]_. |
|
means (Sequence[float]): Denormalizing means for delta coordinates. |
|
Default (0., 0., 0., 0.). |
|
stds (Sequence[float]): Denormalizing standard deviation for delta |
|
coordinates. Default (1., 1., 1., 1.). |
|
max_shape (Sequence[int] or torch.Tensor or Sequence[ |
|
Sequence[int]],optional): Maximum bounds for boxes, specifies |
|
(H, W, C) or (H, W). If rois shape is (B, N, 4), then |
|
the max_shape should be a Sequence[Sequence[int]] |
|
and the length of max_shape should also be B. Default None. |
|
wh_ratio_clip (float): Maximum aspect ratio for boxes. |
|
Default 16 / 1000. |
|
clip_border (bool, optional): Whether clip the objects outside the |
|
border of the image. Default True. |
|
add_ctr_clamp (bool): Whether to add center clamp, when added, the |
|
predicted box is clamped is its center is too far away from |
|
the original anchor's center. Only used by YOLOF. Default False. |
|
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. |
|
Default 32. |
|
|
|
Returns: |
|
Tensor: Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or |
|
(N, num_classes * 4) or (N, 4), where 4 represent |
|
tl_x, tl_y, br_x, br_y. |
|
|
|
References: |
|
.. [1] https://arxiv.org/abs/1311.2524 |
|
|
|
Example: |
|
>>> rois = torch.Tensor([[ 0., 0., 1., 1.], |
|
>>> [ 0., 0., 1., 1.], |
|
>>> [ 0., 0., 1., 1.], |
|
>>> [ 5., 5., 5., 5.]]) |
|
>>> deltas = torch.Tensor([[ 0., 0., 0., 0.], |
|
>>> [ 1., 1., 1., 1.], |
|
>>> [ 0., 0., 2., -1.], |
|
>>> [ 0.7, -1.9, -0.5, 0.3]]) |
|
>>> delta2bbox(rois, deltas, max_shape=(32, 32, 3)) |
|
tensor([[0.0000, 0.0000, 1.0000, 1.0000], |
|
[0.1409, 0.1409, 2.8591, 2.8591], |
|
[0.0000, 0.3161, 4.1945, 0.6839], |
|
[5.0000, 5.0000, 5.0000, 5.0000]]) |
|
""" |
|
means = deltas.new_tensor(means).view(1, |
|
-1).repeat(1, |
|
deltas.size(-1) // 4) |
|
stds = deltas.new_tensor(stds).view(1, -1).repeat(1, deltas.size(-1) // 4) |
|
denorm_deltas = deltas * stds + means |
|
dx = denorm_deltas[..., 0::4] |
|
dy = denorm_deltas[..., 1::4] |
|
dw = denorm_deltas[..., 2::4] |
|
dh = denorm_deltas[..., 3::4] |
|
|
|
x1, y1 = rois[..., 0], rois[..., 1] |
|
x2, y2 = rois[..., 2], rois[..., 3] |
|
|
|
px = ((x1 + x2) * 0.5).unsqueeze(-1).expand_as(dx) |
|
py = ((y1 + y2) * 0.5).unsqueeze(-1).expand_as(dy) |
|
|
|
pw = (x2 - x1).unsqueeze(-1).expand_as(dw) |
|
ph = (y2 - y1).unsqueeze(-1).expand_as(dh) |
|
|
|
dx_width = pw * dx |
|
dy_height = ph * dy |
|
|
|
max_ratio = np.abs(np.log(wh_ratio_clip)) |
|
if add_ctr_clamp: |
|
dx_width = torch.clamp(dx_width, max=ctr_clamp, min=-ctr_clamp) |
|
dy_height = torch.clamp(dy_height, max=ctr_clamp, min=-ctr_clamp) |
|
dw = torch.clamp(dw, max=max_ratio) |
|
dh = torch.clamp(dh, max=max_ratio) |
|
else: |
|
dw = dw.clamp(min=-max_ratio, max=max_ratio) |
|
dh = dh.clamp(min=-max_ratio, max=max_ratio) |
|
|
|
gw = pw * dw.exp() |
|
gh = ph * dh.exp() |
|
|
|
gx = px + dx_width |
|
gy = py + dy_height |
|
|
|
x1 = gx - gw * 0.5 |
|
y1 = gy - gh * 0.5 |
|
x2 = gx + gw * 0.5 |
|
y2 = gy + gh * 0.5 |
|
|
|
bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) |
|
|
|
if clip_border and max_shape is not None: |
|
|
|
if torch.onnx.is_in_onnx_export(): |
|
from mmdet.core.export import dynamic_clip_for_onnx |
|
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape) |
|
bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) |
|
return bboxes |
|
if not isinstance(max_shape, torch.Tensor): |
|
max_shape = x1.new_tensor(max_shape) |
|
max_shape = max_shape[..., :2].type_as(x1) |
|
if max_shape.ndim == 2: |
|
assert bboxes.ndim == 3 |
|
assert max_shape.size(0) == bboxes.size(0) |
|
|
|
min_xy = x1.new_tensor(0) |
|
max_xy = torch.cat( |
|
[max_shape] * (deltas.size(-1) // 2), |
|
dim=-1).flip(-1).unsqueeze(-2) |
|
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) |
|
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) |
|
|
|
return bboxes |
|
|