|
|
|
from typing import Optional |
|
|
|
import torch |
|
from mmengine.structures import InstanceData |
|
|
|
from mmdet.registry import TASK_UTILS |
|
from mmdet.utils import ConfigType |
|
from .assign_result import AssignResult |
|
from .base_assigner import BaseAssigner |
|
|
|
INF = 100000000 |
|
|
|
|
|
@TASK_UTILS.register_module() |
|
class TaskAlignedAssigner(BaseAssigner): |
|
"""Task aligned assigner used in the paper: |
|
`TOOD: Task-aligned One-stage Object Detection. |
|
<https://arxiv.org/abs/2108.07755>`_. |
|
|
|
Assign a corresponding gt bbox or background to each predicted bbox. |
|
Each bbox will be assigned with `0` or a positive integer |
|
indicating the ground truth index. |
|
|
|
- 0: negative sample, no assigned gt |
|
- positive integer: positive sample, index (1-based) of assigned gt |
|
|
|
Args: |
|
topk (int): number of bbox selected in each level |
|
iou_calculator (:obj:`ConfigDict` or dict): Config dict for iou |
|
calculator. Defaults to ``dict(type='BboxOverlaps2D')`` |
|
""" |
|
|
|
def __init__(self, |
|
topk: int, |
|
iou_calculator: ConfigType = dict(type='BboxOverlaps2D')): |
|
assert topk >= 1 |
|
self.topk = topk |
|
self.iou_calculator = TASK_UTILS.build(iou_calculator) |
|
|
|
def assign(self, |
|
pred_instances: InstanceData, |
|
gt_instances: InstanceData, |
|
gt_instances_ignore: Optional[InstanceData] = None, |
|
alpha: int = 1, |
|
beta: int = 6) -> AssignResult: |
|
"""Assign gt to bboxes. |
|
|
|
The assignment is done in following steps |
|
|
|
1. compute alignment metric between all bbox (bbox of all pyramid |
|
levels) and gt |
|
2. select top-k bbox as candidates for each gt |
|
3. limit the positive sample's center in gt (because the anchor-free |
|
detector only can predict positive distance) |
|
|
|
|
|
Args: |
|
pred_instances (:obj:`InstaceData`): Instances of model |
|
predictions. It includes ``priors``, and the priors can |
|
be anchors, points, or bboxes predicted by the model, |
|
shape(n, 4). |
|
gt_instances (:obj:`InstaceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
gt_instances_ignore (:obj:`InstaceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` |
|
attribute data that is ignored during training and testing. |
|
Defaults to None. |
|
alpha (int): Hyper-parameters related to alignment_metrics. |
|
Defaults to 1. |
|
beta (int): Hyper-parameters related to alignment_metrics. |
|
Defaults to 6. |
|
|
|
Returns: |
|
:obj:`TaskAlignedAssignResult`: The assign result. |
|
""" |
|
priors = pred_instances.priors |
|
decode_bboxes = pred_instances.bboxes |
|
pred_scores = pred_instances.scores |
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
|
|
priors = priors[:, :4] |
|
num_gt, num_bboxes = gt_bboxes.size(0), priors.size(0) |
|
|
|
overlaps = self.iou_calculator(decode_bboxes, gt_bboxes).detach() |
|
bbox_scores = pred_scores[:, gt_labels].detach() |
|
|
|
assigned_gt_inds = priors.new_full((num_bboxes, ), 0, dtype=torch.long) |
|
assign_metrics = priors.new_zeros((num_bboxes, )) |
|
|
|
if num_gt == 0 or num_bboxes == 0: |
|
|
|
max_overlaps = priors.new_zeros((num_bboxes, )) |
|
if num_gt == 0: |
|
|
|
assigned_gt_inds[:] = 0 |
|
assigned_labels = priors.new_full((num_bboxes, ), |
|
-1, |
|
dtype=torch.long) |
|
assign_result = AssignResult( |
|
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) |
|
assign_result.assign_metrics = assign_metrics |
|
return assign_result |
|
|
|
|
|
alignment_metrics = bbox_scores**alpha * overlaps**beta |
|
topk = min(self.topk, alignment_metrics.size(0)) |
|
_, candidate_idxs = alignment_metrics.topk(topk, dim=0, largest=True) |
|
candidate_metrics = alignment_metrics[candidate_idxs, |
|
torch.arange(num_gt)] |
|
is_pos = candidate_metrics > 0 |
|
|
|
|
|
priors_cx = (priors[:, 0] + priors[:, 2]) / 2.0 |
|
priors_cy = (priors[:, 1] + priors[:, 3]) / 2.0 |
|
for gt_idx in range(num_gt): |
|
candidate_idxs[:, gt_idx] += gt_idx * num_bboxes |
|
ep_priors_cx = priors_cx.view(1, -1).expand( |
|
num_gt, num_bboxes).contiguous().view(-1) |
|
ep_priors_cy = priors_cy.view(1, -1).expand( |
|
num_gt, num_bboxes).contiguous().view(-1) |
|
candidate_idxs = candidate_idxs.view(-1) |
|
|
|
|
|
|
|
l_ = ep_priors_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0] |
|
t_ = ep_priors_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1] |
|
r_ = gt_bboxes[:, 2] - ep_priors_cx[candidate_idxs].view(-1, num_gt) |
|
b_ = gt_bboxes[:, 3] - ep_priors_cy[candidate_idxs].view(-1, num_gt) |
|
is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01 |
|
is_pos = is_pos & is_in_gts |
|
|
|
|
|
|
|
overlaps_inf = torch.full_like(overlaps, |
|
-INF).t().contiguous().view(-1) |
|
index = candidate_idxs.view(-1)[is_pos.view(-1)] |
|
overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index] |
|
overlaps_inf = overlaps_inf.view(num_gt, -1).t() |
|
|
|
max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1) |
|
assigned_gt_inds[ |
|
max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1 |
|
assign_metrics[max_overlaps != -INF] = alignment_metrics[ |
|
max_overlaps != -INF, argmax_overlaps[max_overlaps != -INF]] |
|
|
|
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) |
|
pos_inds = torch.nonzero( |
|
assigned_gt_inds > 0, as_tuple=False).squeeze() |
|
if pos_inds.numel() > 0: |
|
assigned_labels[pos_inds] = gt_labels[assigned_gt_inds[pos_inds] - |
|
1] |
|
assign_result = AssignResult( |
|
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) |
|
assign_result.assign_metrics = assign_metrics |
|
return assign_result |
|
|