|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import TASK_UTILS |
|
from mmdet.utils import ConfigType |
|
from .assign_result import AssignResult |
|
from .base_assigner import BaseAssigner |
|
|
|
INF = 100000.0 |
|
EPS = 1.0e-7 |
|
|
|
|
|
@TASK_UTILS.register_module() |
|
class SimOTAAssigner(BaseAssigner): |
|
"""Computes matching between predictions and ground truth. |
|
|
|
Args: |
|
center_radius (float): Ground truth center size |
|
to judge whether a prior is in center. Defaults to 2.5. |
|
candidate_topk (int): The candidate top-k which used to |
|
get top-k ious to calculate dynamic-k. Defaults to 10. |
|
iou_weight (float): The scale factor for regression |
|
iou cost. Defaults to 3.0. |
|
cls_weight (float): The scale factor for classification |
|
cost. Defaults to 1.0. |
|
iou_calculator (ConfigType): Config of overlaps Calculator. |
|
Defaults to dict(type='BboxOverlaps2D'). |
|
""" |
|
|
|
def __init__(self, |
|
center_radius: float = 2.5, |
|
candidate_topk: int = 10, |
|
iou_weight: float = 3.0, |
|
cls_weight: float = 1.0, |
|
iou_calculator: ConfigType = dict(type='BboxOverlaps2D')): |
|
self.center_radius = center_radius |
|
self.candidate_topk = candidate_topk |
|
self.iou_weight = iou_weight |
|
self.cls_weight = cls_weight |
|
self.iou_calculator = TASK_UTILS.build(iou_calculator) |
|
|
|
def assign(self, |
|
pred_instances: InstanceData, |
|
gt_instances: InstanceData, |
|
gt_instances_ignore: Optional[InstanceData] = None, |
|
**kwargs) -> AssignResult: |
|
"""Assign gt to priors using SimOTA. |
|
|
|
Args: |
|
pred_instances (:obj:`InstanceData`): Instances of model |
|
predictions. It includes ``priors``, and the priors can |
|
be anchors or points, or the bboxes predicted by the |
|
previous stage, has shape (n, 4). The bboxes predicted by |
|
the current model or stage will be named ``bboxes``, |
|
``labels``, and ``scores``, the same as the ``InstanceData`` |
|
in other places. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes``, with shape (k, 4), |
|
and ``labels``, with shape (k, ). |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` |
|
attribute data that is ignored during training and testing. |
|
Defaults to None. |
|
Returns: |
|
obj:`AssignResult`: The assigned result. |
|
""" |
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
num_gt = gt_bboxes.size(0) |
|
|
|
decoded_bboxes = pred_instances.bboxes |
|
pred_scores = pred_instances.scores |
|
priors = pred_instances.priors |
|
num_bboxes = decoded_bboxes.size(0) |
|
|
|
|
|
assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ), |
|
0, |
|
dtype=torch.long) |
|
if num_gt == 0 or num_bboxes == 0: |
|
|
|
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) |
|
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), |
|
-1, |
|
dtype=torch.long) |
|
return AssignResult( |
|
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) |
|
|
|
valid_mask, is_in_boxes_and_center = self.get_in_gt_and_in_center_info( |
|
priors, gt_bboxes) |
|
valid_decoded_bbox = decoded_bboxes[valid_mask] |
|
valid_pred_scores = pred_scores[valid_mask] |
|
num_valid = valid_decoded_bbox.size(0) |
|
if num_valid == 0: |
|
|
|
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) |
|
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), |
|
-1, |
|
dtype=torch.long) |
|
return AssignResult( |
|
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) |
|
|
|
pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes) |
|
iou_cost = -torch.log(pairwise_ious + EPS) |
|
|
|
gt_onehot_label = ( |
|
F.one_hot(gt_labels.to(torch.int64), |
|
pred_scores.shape[-1]).float().unsqueeze(0).repeat( |
|
num_valid, 1, 1)) |
|
|
|
valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
cls_cost = ( |
|
F.binary_cross_entropy( |
|
valid_pred_scores.to(dtype=torch.float32), |
|
gt_onehot_label, |
|
reduction='none', |
|
).sum(-1).to(dtype=valid_pred_scores.dtype)) |
|
|
|
cost_matrix = ( |
|
cls_cost * self.cls_weight + iou_cost * self.iou_weight + |
|
(~is_in_boxes_and_center) * INF) |
|
|
|
matched_pred_ious, matched_gt_inds = \ |
|
self.dynamic_k_matching( |
|
cost_matrix, pairwise_ious, num_gt, valid_mask) |
|
|
|
|
|
assigned_gt_inds[valid_mask] = matched_gt_inds + 1 |
|
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) |
|
assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long() |
|
max_overlaps = assigned_gt_inds.new_full((num_bboxes, ), |
|
-INF, |
|
dtype=torch.float32) |
|
max_overlaps[valid_mask] = matched_pred_ious |
|
return AssignResult( |
|
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) |
|
|
|
def get_in_gt_and_in_center_info( |
|
self, priors: Tensor, gt_bboxes: Tensor) -> Tuple[Tensor, Tensor]: |
|
"""Get the information of which prior is in gt bboxes and gt center |
|
priors.""" |
|
num_gt = gt_bboxes.size(0) |
|
|
|
repeated_x = priors[:, 0].unsqueeze(1).repeat(1, num_gt) |
|
repeated_y = priors[:, 1].unsqueeze(1).repeat(1, num_gt) |
|
repeated_stride_x = priors[:, 2].unsqueeze(1).repeat(1, num_gt) |
|
repeated_stride_y = priors[:, 3].unsqueeze(1).repeat(1, num_gt) |
|
|
|
|
|
l_ = repeated_x - gt_bboxes[:, 0] |
|
t_ = repeated_y - gt_bboxes[:, 1] |
|
r_ = gt_bboxes[:, 2] - repeated_x |
|
b_ = gt_bboxes[:, 3] - repeated_y |
|
|
|
deltas = torch.stack([l_, t_, r_, b_], dim=1) |
|
is_in_gts = deltas.min(dim=1).values > 0 |
|
is_in_gts_all = is_in_gts.sum(dim=1) > 0 |
|
|
|
|
|
gt_cxs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 |
|
gt_cys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 |
|
ct_box_l = gt_cxs - self.center_radius * repeated_stride_x |
|
ct_box_t = gt_cys - self.center_radius * repeated_stride_y |
|
ct_box_r = gt_cxs + self.center_radius * repeated_stride_x |
|
ct_box_b = gt_cys + self.center_radius * repeated_stride_y |
|
|
|
cl_ = repeated_x - ct_box_l |
|
ct_ = repeated_y - ct_box_t |
|
cr_ = ct_box_r - repeated_x |
|
cb_ = ct_box_b - repeated_y |
|
|
|
ct_deltas = torch.stack([cl_, ct_, cr_, cb_], dim=1) |
|
is_in_cts = ct_deltas.min(dim=1).values > 0 |
|
is_in_cts_all = is_in_cts.sum(dim=1) > 0 |
|
|
|
|
|
is_in_gts_or_centers = is_in_gts_all | is_in_cts_all |
|
|
|
|
|
is_in_boxes_and_centers = ( |
|
is_in_gts[is_in_gts_or_centers, :] |
|
& is_in_cts[is_in_gts_or_centers, :]) |
|
return is_in_gts_or_centers, is_in_boxes_and_centers |
|
|
|
def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor, |
|
num_gt: int, |
|
valid_mask: Tensor) -> Tuple[Tensor, Tensor]: |
|
"""Use IoU and matching cost to calculate the dynamic top-k positive |
|
targets.""" |
|
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) |
|
|
|
candidate_topk = min(self.candidate_topk, pairwise_ious.size(0)) |
|
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0) |
|
|
|
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1) |
|
for gt_idx in range(num_gt): |
|
_, pos_idx = torch.topk( |
|
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False) |
|
matching_matrix[:, gt_idx][pos_idx] = 1 |
|
|
|
del topk_ious, dynamic_ks, pos_idx |
|
|
|
prior_match_gt_mask = matching_matrix.sum(1) > 1 |
|
if prior_match_gt_mask.sum() > 0: |
|
cost_min, cost_argmin = torch.min( |
|
cost[prior_match_gt_mask, :], dim=1) |
|
matching_matrix[prior_match_gt_mask, :] *= 0 |
|
matching_matrix[prior_match_gt_mask, cost_argmin] = 1 |
|
|
|
fg_mask_inboxes = matching_matrix.sum(1) > 0 |
|
valid_mask[valid_mask.clone()] = fg_mask_inboxes |
|
|
|
matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1) |
|
matched_pred_ious = (matching_matrix * |
|
pairwise_ious).sum(1)[fg_mask_inboxes] |
|
return matched_pred_ious, matched_gt_inds |
|
|