|
|
|
from typing import Optional |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from .utils import weighted_loss |
|
|
|
|
|
@weighted_loss |
|
def knowledge_distillation_kl_div_loss(pred: Tensor, |
|
soft_label: Tensor, |
|
T: int, |
|
detach_target: bool = True) -> Tensor: |
|
r"""Loss function for knowledge distilling using KL divergence. |
|
|
|
Args: |
|
pred (Tensor): Predicted logits with shape (N, n + 1). |
|
soft_label (Tensor): Target logits with shape (N, N + 1). |
|
T (int): Temperature for distillation. |
|
detach_target (bool): Remove soft_label from automatic differentiation |
|
|
|
Returns: |
|
Tensor: Loss tensor with shape (N,). |
|
""" |
|
assert pred.size() == soft_label.size() |
|
target = F.softmax(soft_label / T, dim=1) |
|
if detach_target: |
|
target = target.detach() |
|
|
|
kd_loss = F.kl_div( |
|
F.log_softmax(pred / T, dim=1), target, reduction='none').mean(1) * ( |
|
T * T) |
|
|
|
return kd_loss |
|
|
|
|
|
@MODELS.register_module() |
|
class KnowledgeDistillationKLDivLoss(nn.Module): |
|
"""Loss function for knowledge distilling using KL divergence. |
|
|
|
Args: |
|
reduction (str): Options are `'none'`, `'mean'` and `'sum'`. |
|
loss_weight (float): Loss weight of current loss. |
|
T (int): Temperature for distillation. |
|
""" |
|
|
|
def __init__(self, |
|
reduction: str = 'mean', |
|
loss_weight: float = 1.0, |
|
T: int = 10) -> None: |
|
super().__init__() |
|
assert T >= 1 |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
self.T = T |
|
|
|
def forward(self, |
|
pred: Tensor, |
|
soft_label: Tensor, |
|
weight: Optional[Tensor] = None, |
|
avg_factor: Optional[int] = None, |
|
reduction_override: Optional[str] = None) -> Tensor: |
|
"""Forward function. |
|
|
|
Args: |
|
pred (Tensor): Predicted logits with shape (N, n + 1). |
|
soft_label (Tensor): Target logits with shape (N, N + 1). |
|
weight (Tensor, optional): The weight of loss for each |
|
prediction. Defaults to None. |
|
avg_factor (int, optional): Average factor that is used to average |
|
the loss. Defaults to None. |
|
reduction_override (str, optional): The reduction method used to |
|
override the original reduction method of the loss. |
|
Defaults to None. |
|
|
|
Returns: |
|
Tensor: Loss tensor. |
|
""" |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
|
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
|
|
loss_kd = self.loss_weight * knowledge_distillation_kl_div_loss( |
|
pred, |
|
soft_label, |
|
weight, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
T=self.T) |
|
|
|
return loss_kd |
|
|