|
|
|
import math |
|
import warnings |
|
from typing import Optional, Sequence, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer, |
|
build_norm_layer) |
|
from mmcv.cnn.bricks.drop import Dropout |
|
from mmengine.model import BaseModule, ModuleList |
|
from mmengine.utils import to_2tuple |
|
from torch import Tensor, nn |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.utils import OptConfigType, OptMultiConfig |
|
|
|
|
|
def nlc_to_nchw(x: Tensor, hw_shape: Sequence[int]) -> Tensor: |
|
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. |
|
|
|
Args: |
|
x (Tensor): The input tensor of shape [N, L, C] before conversion. |
|
hw_shape (Sequence[int]): The height and width of output feature map. |
|
|
|
Returns: |
|
Tensor: The output tensor of shape [N, C, H, W] after conversion. |
|
""" |
|
H, W = hw_shape |
|
assert len(x.shape) == 3 |
|
B, L, C = x.shape |
|
assert L == H * W, 'The seq_len does not match H, W' |
|
return x.transpose(1, 2).reshape(B, C, H, W).contiguous() |
|
|
|
|
|
def nchw_to_nlc(x): |
|
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. |
|
|
|
Args: |
|
x (Tensor): The input tensor of shape [N, C, H, W] before conversion. |
|
|
|
Returns: |
|
Tensor: The output tensor of shape [N, L, C] after conversion. |
|
""" |
|
assert len(x.shape) == 4 |
|
return x.flatten(2).transpose(1, 2).contiguous() |
|
|
|
|
|
def coordinate_to_encoding(coord_tensor: Tensor, |
|
num_feats: int = 128, |
|
temperature: int = 10000, |
|
scale: float = 2 * math.pi): |
|
"""Convert coordinate tensor to positional encoding. |
|
|
|
Args: |
|
coord_tensor (Tensor): Coordinate tensor to be converted to |
|
positional encoding. With the last dimension as 2 or 4. |
|
num_feats (int, optional): The feature dimension for each position |
|
along x-axis or y-axis. Note the final returned dimension |
|
for each position is 2 times of this value. Defaults to 128. |
|
temperature (int, optional): The temperature used for scaling |
|
the position embedding. Defaults to 10000. |
|
scale (float, optional): A scale factor that scales the position |
|
embedding. The scale will be used only when `normalize` is True. |
|
Defaults to 2*pi. |
|
Returns: |
|
Tensor: Returned encoded positional tensor. |
|
""" |
|
dim_t = torch.arange( |
|
num_feats, dtype=torch.float32, device=coord_tensor.device) |
|
dim_t = temperature**(2 * (dim_t // 2) / num_feats) |
|
x_embed = coord_tensor[..., 0] * scale |
|
y_embed = coord_tensor[..., 1] * scale |
|
pos_x = x_embed[..., None] / dim_t |
|
pos_y = y_embed[..., None] / dim_t |
|
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), |
|
dim=-1).flatten(2) |
|
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), |
|
dim=-1).flatten(2) |
|
if coord_tensor.size(-1) == 2: |
|
pos = torch.cat((pos_y, pos_x), dim=-1) |
|
elif coord_tensor.size(-1) == 4: |
|
w_embed = coord_tensor[..., 2] * scale |
|
pos_w = w_embed[..., None] / dim_t |
|
pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()), |
|
dim=-1).flatten(2) |
|
|
|
h_embed = coord_tensor[..., 3] * scale |
|
pos_h = h_embed[..., None] / dim_t |
|
pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()), |
|
dim=-1).flatten(2) |
|
|
|
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=-1) |
|
else: |
|
raise ValueError('Unknown pos_tensor shape(-1):{}'.format( |
|
coord_tensor.size(-1))) |
|
return pos |
|
|
|
|
|
def inverse_sigmoid(x: Tensor, eps: float = 1e-5) -> Tensor: |
|
"""Inverse function of sigmoid. |
|
|
|
Args: |
|
x (Tensor): The tensor to do the inverse. |
|
eps (float): EPS avoid numerical overflow. Defaults 1e-5. |
|
Returns: |
|
Tensor: The x has passed the inverse function of sigmoid, has the same |
|
shape with input. |
|
""" |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1 / x2) |
|
|
|
|
|
class AdaptivePadding(nn.Module): |
|
"""Applies padding to input (if needed) so that input can get fully covered |
|
by filter you specified. It support two modes "same" and "corner". The |
|
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around |
|
input. The "corner" mode would pad zero to bottom right. |
|
|
|
Args: |
|
kernel_size (int | tuple): Size of the kernel: |
|
stride (int | tuple): Stride of the filter. Default: 1: |
|
dilation (int | tuple): Spacing between kernel elements. |
|
Default: 1 |
|
padding (str): Support "same" and "corner", "corner" mode |
|
would pad zero to bottom right, and "same" mode would |
|
pad zero around input. Default: "corner". |
|
Example: |
|
>>> kernel_size = 16 |
|
>>> stride = 16 |
|
>>> dilation = 1 |
|
>>> input = torch.rand(1, 1, 15, 17) |
|
>>> adap_pad = AdaptivePadding( |
|
>>> kernel_size=kernel_size, |
|
>>> stride=stride, |
|
>>> dilation=dilation, |
|
>>> padding="corner") |
|
>>> out = adap_pad(input) |
|
>>> assert (out.shape[2], out.shape[3]) == (16, 32) |
|
>>> input = torch.rand(1, 1, 16, 17) |
|
>>> out = adap_pad(input) |
|
>>> assert (out.shape[2], out.shape[3]) == (16, 32) |
|
""" |
|
|
|
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): |
|
|
|
super(AdaptivePadding, self).__init__() |
|
|
|
assert padding in ('same', 'corner') |
|
|
|
kernel_size = to_2tuple(kernel_size) |
|
stride = to_2tuple(stride) |
|
padding = to_2tuple(padding) |
|
dilation = to_2tuple(dilation) |
|
|
|
self.padding = padding |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.dilation = dilation |
|
|
|
def get_pad_shape(self, input_shape): |
|
input_h, input_w = input_shape |
|
kernel_h, kernel_w = self.kernel_size |
|
stride_h, stride_w = self.stride |
|
output_h = math.ceil(input_h / stride_h) |
|
output_w = math.ceil(input_w / stride_w) |
|
pad_h = max((output_h - 1) * stride_h + |
|
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) |
|
pad_w = max((output_w - 1) * stride_w + |
|
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) |
|
return pad_h, pad_w |
|
|
|
def forward(self, x): |
|
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) |
|
if pad_h > 0 or pad_w > 0: |
|
if self.padding == 'corner': |
|
x = F.pad(x, [0, pad_w, 0, pad_h]) |
|
elif self.padding == 'same': |
|
x = F.pad(x, [ |
|
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, |
|
pad_h - pad_h // 2 |
|
]) |
|
return x |
|
|
|
|
|
class PatchEmbed(BaseModule): |
|
"""Image to Patch Embedding. |
|
|
|
We use a conv layer to implement PatchEmbed. |
|
|
|
Args: |
|
in_channels (int): The num of input channels. Default: 3 |
|
embed_dims (int): The dimensions of embedding. Default: 768 |
|
conv_type (str): The config dict for embedding |
|
conv layer type selection. Default: "Conv2d. |
|
kernel_size (int): The kernel_size of embedding conv. Default: 16. |
|
stride (int): The slide stride of embedding conv. |
|
Default: None (Would be set as `kernel_size`). |
|
padding (int | tuple | string ): The padding length of |
|
embedding conv. When it is a string, it means the mode |
|
of adaptive padding, support "same" and "corner" now. |
|
Default: "corner". |
|
dilation (int): The dilation rate of embedding conv. Default: 1. |
|
bias (bool): Bias of embed conv. Default: True. |
|
norm_cfg (dict, optional): Config dict for normalization layer. |
|
Default: None. |
|
input_size (int | tuple | None): The size of input, which will be |
|
used to calculate the out size. Only work when `dynamic_size` |
|
is False. Default: None. |
|
init_cfg (`mmengine.ConfigDict`, optional): The Config for |
|
initialization. Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int = 3, |
|
embed_dims: int = 768, |
|
conv_type: str = 'Conv2d', |
|
kernel_size: int = 16, |
|
stride: int = 16, |
|
padding: Union[int, tuple, str] = 'corner', |
|
dilation: int = 1, |
|
bias: bool = True, |
|
norm_cfg: OptConfigType = None, |
|
input_size: Union[int, tuple] = None, |
|
init_cfg: OptConfigType = None) -> None: |
|
super(PatchEmbed, self).__init__(init_cfg=init_cfg) |
|
|
|
self.embed_dims = embed_dims |
|
if stride is None: |
|
stride = kernel_size |
|
|
|
kernel_size = to_2tuple(kernel_size) |
|
stride = to_2tuple(stride) |
|
dilation = to_2tuple(dilation) |
|
|
|
if isinstance(padding, str): |
|
self.adap_padding = AdaptivePadding( |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
padding=padding) |
|
|
|
padding = 0 |
|
else: |
|
self.adap_padding = None |
|
padding = to_2tuple(padding) |
|
|
|
self.projection = build_conv_layer( |
|
dict(type=conv_type), |
|
in_channels=in_channels, |
|
out_channels=embed_dims, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias) |
|
|
|
if norm_cfg is not None: |
|
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] |
|
else: |
|
self.norm = None |
|
|
|
if input_size: |
|
input_size = to_2tuple(input_size) |
|
|
|
|
|
|
|
self.init_input_size = input_size |
|
if self.adap_padding: |
|
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) |
|
input_h, input_w = input_size |
|
input_h = input_h + pad_h |
|
input_w = input_w + pad_w |
|
input_size = (input_h, input_w) |
|
|
|
|
|
h_out = (input_size[0] + 2 * padding[0] - dilation[0] * |
|
(kernel_size[0] - 1) - 1) // stride[0] + 1 |
|
w_out = (input_size[1] + 2 * padding[1] - dilation[1] * |
|
(kernel_size[1] - 1) - 1) // stride[1] + 1 |
|
self.init_out_size = (h_out, w_out) |
|
else: |
|
self.init_input_size = None |
|
self.init_out_size = None |
|
|
|
def forward(self, x: Tensor) -> Tuple[Tensor, Tuple[int]]: |
|
""" |
|
Args: |
|
x (Tensor): Has shape (B, C, H, W). In most case, C is 3. |
|
|
|
Returns: |
|
tuple: Contains merged results and its spatial shape. |
|
|
|
- x (Tensor): Has shape (B, out_h * out_w, embed_dims) |
|
- out_size (tuple[int]): Spatial shape of x, arrange as |
|
(out_h, out_w). |
|
""" |
|
|
|
if self.adap_padding: |
|
x = self.adap_padding(x) |
|
|
|
x = self.projection(x) |
|
out_size = (x.shape[2], x.shape[3]) |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x, out_size |
|
|
|
|
|
class PatchMerging(BaseModule): |
|
"""Merge patch feature map. |
|
|
|
This layer groups feature map by kernel_size, and applies norm and linear |
|
layers to the grouped feature map. Our implementation uses `nn.Unfold` to |
|
merge patch, which is about 25% faster than original implementation. |
|
Instead, we need to modify pretrained models for compatibility. |
|
|
|
Args: |
|
in_channels (int): The num of input channels. |
|
to gets fully covered by filter and stride you specified.. |
|
Default: True. |
|
out_channels (int): The num of output channels. |
|
kernel_size (int | tuple, optional): the kernel size in the unfold |
|
layer. Defaults to 2. |
|
stride (int | tuple, optional): the stride of the sliding blocks in the |
|
unfold layer. Default: None. (Would be set as `kernel_size`) |
|
padding (int | tuple | string ): The padding length of |
|
embedding conv. When it is a string, it means the mode |
|
of adaptive padding, support "same" and "corner" now. |
|
Default: "corner". |
|
dilation (int | tuple, optional): dilation parameter in the unfold |
|
layer. Default: 1. |
|
bias (bool, optional): Whether to add bias in linear layer or not. |
|
Defaults: False. |
|
norm_cfg (dict, optional): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
init_cfg (dict, optional): The extra config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Optional[Union[int, tuple]] = 2, |
|
stride: Optional[Union[int, tuple]] = None, |
|
padding: Union[int, tuple, str] = 'corner', |
|
dilation: Optional[Union[int, tuple]] = 1, |
|
bias: Optional[bool] = False, |
|
norm_cfg: OptConfigType = dict(type='LN'), |
|
init_cfg: OptConfigType = None) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
if stride: |
|
stride = stride |
|
else: |
|
stride = kernel_size |
|
|
|
kernel_size = to_2tuple(kernel_size) |
|
stride = to_2tuple(stride) |
|
dilation = to_2tuple(dilation) |
|
|
|
if isinstance(padding, str): |
|
self.adap_padding = AdaptivePadding( |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
padding=padding) |
|
|
|
padding = 0 |
|
else: |
|
self.adap_padding = None |
|
|
|
padding = to_2tuple(padding) |
|
self.sampler = nn.Unfold( |
|
kernel_size=kernel_size, |
|
dilation=dilation, |
|
padding=padding, |
|
stride=stride) |
|
|
|
sample_dim = kernel_size[0] * kernel_size[1] * in_channels |
|
|
|
if norm_cfg is not None: |
|
self.norm = build_norm_layer(norm_cfg, sample_dim)[1] |
|
else: |
|
self.norm = None |
|
|
|
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) |
|
|
|
def forward(self, x: Tensor, |
|
input_size: Tuple[int]) -> Tuple[Tensor, Tuple[int]]: |
|
""" |
|
Args: |
|
x (Tensor): Has shape (B, H*W, C_in). |
|
input_size (tuple[int]): The spatial shape of x, arrange as (H, W). |
|
Default: None. |
|
|
|
Returns: |
|
tuple: Contains merged results and its spatial shape. |
|
|
|
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) |
|
- out_size (tuple[int]): Spatial shape of x, arrange as |
|
(Merged_H, Merged_W). |
|
""" |
|
B, L, C = x.shape |
|
assert isinstance(input_size, Sequence), f'Expect ' \ |
|
f'input_size is ' \ |
|
f'`Sequence` ' \ |
|
f'but get {input_size}' |
|
|
|
H, W = input_size |
|
assert L == H * W, 'input feature has wrong size' |
|
|
|
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) |
|
|
|
|
|
|
|
if self.adap_padding: |
|
x = self.adap_padding(x) |
|
H, W = x.shape[-2:] |
|
|
|
x = self.sampler(x) |
|
|
|
|
|
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * |
|
(self.sampler.kernel_size[0] - 1) - |
|
1) // self.sampler.stride[0] + 1 |
|
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * |
|
(self.sampler.kernel_size[1] - 1) - |
|
1) // self.sampler.stride[1] + 1 |
|
|
|
output_size = (out_h, out_w) |
|
x = x.transpose(1, 2) |
|
x = self.norm(x) if self.norm else x |
|
x = self.reduction(x) |
|
return x, output_size |
|
|
|
|
|
class ConditionalAttention(BaseModule): |
|
"""A wrapper of conditional attention, dropout and residual connection. |
|
|
|
Args: |
|
embed_dims (int): The embedding dimension. |
|
num_heads (int): Parallel attention heads. |
|
attn_drop (float): A Dropout layer on attn_output_weights. |
|
Default: 0.0. |
|
proj_drop: A Dropout layer after `nn.MultiheadAttention`. |
|
Default: 0.0. |
|
cross_attn (bool): Whether the attention module is for cross attention. |
|
Default: False |
|
keep_query_pos (bool): Whether to transform query_pos before cross |
|
attention. |
|
Default: False. |
|
batch_first (bool): When it is True, Key, Query and Value are shape of |
|
(batch, n, embed_dim), otherwise (n, batch, embed_dim). |
|
Default: True. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims: int, |
|
num_heads: int, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
cross_attn: bool = False, |
|
keep_query_pos: bool = False, |
|
batch_first: bool = True, |
|
init_cfg: OptMultiConfig = None): |
|
super().__init__(init_cfg=init_cfg) |
|
|
|
assert batch_first is True, 'Set `batch_first`\ |
|
to False is NOT supported in ConditionalAttention. \ |
|
First dimension of all DETRs in mmdet is `batch`, \ |
|
please set `batch_first` to True.' |
|
|
|
self.cross_attn = cross_attn |
|
self.keep_query_pos = keep_query_pos |
|
self.embed_dims = embed_dims |
|
self.num_heads = num_heads |
|
self.attn_drop = Dropout(attn_drop) |
|
self.proj_drop = Dropout(proj_drop) |
|
|
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
"""Initialize layers for qkv projection.""" |
|
embed_dims = self.embed_dims |
|
self.qcontent_proj = Linear(embed_dims, embed_dims) |
|
self.qpos_proj = Linear(embed_dims, embed_dims) |
|
self.kcontent_proj = Linear(embed_dims, embed_dims) |
|
self.kpos_proj = Linear(embed_dims, embed_dims) |
|
self.v_proj = Linear(embed_dims, embed_dims) |
|
if self.cross_attn: |
|
self.qpos_sine_proj = Linear(embed_dims, embed_dims) |
|
self.out_proj = Linear(embed_dims, embed_dims) |
|
|
|
nn.init.constant_(self.out_proj.bias, 0.) |
|
|
|
def forward_attn(self, |
|
query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
attn_mask: Tensor = None, |
|
key_padding_mask: Tensor = None) -> Tuple[Tensor]: |
|
"""Forward process for `ConditionalAttention`. |
|
|
|
Args: |
|
query (Tensor): The input query with shape [bs, num_queries, |
|
embed_dims]. |
|
key (Tensor): The key tensor with shape [bs, num_keys, |
|
embed_dims]. |
|
If None, the `query` will be used. Defaults to None. |
|
value (Tensor): The value tensor with same shape as `key`. |
|
Same in `nn.MultiheadAttention.forward`. Defaults to None. |
|
If None, the `key` will be used. |
|
attn_mask (Tensor): ByteTensor mask with shape [num_queries, |
|
num_keys]. Same in `nn.MultiheadAttention.forward`. |
|
Defaults to None. |
|
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. |
|
Defaults to None. |
|
Returns: |
|
Tuple[Tensor]: Attention outputs of shape :math:`(N, L, E)`, |
|
where :math:`N` is the batch size, :math:`L` is the target |
|
sequence length , and :math:`E` is the embedding dimension |
|
`embed_dim`. Attention weights per head of shape :math:` |
|
(num_heads, L, S)`. where :math:`N` is batch size, :math:`L` |
|
is target sequence length, and :math:`S` is the source sequence |
|
length. |
|
""" |
|
assert key.size(1) == value.size(1), \ |
|
f'{"key, value must have the same sequence length"}' |
|
assert query.size(0) == key.size(0) == value.size(0), \ |
|
f'{"batch size must be equal for query, key, value"}' |
|
assert query.size(2) == key.size(2), \ |
|
f'{"q_dims, k_dims must be equal"}' |
|
assert value.size(2) == self.embed_dims, \ |
|
f'{"v_dims must be equal to embed_dims"}' |
|
|
|
bs, tgt_len, hidden_dims = query.size() |
|
_, src_len, _ = key.size() |
|
head_dims = hidden_dims // self.num_heads |
|
v_head_dims = self.embed_dims // self.num_heads |
|
assert head_dims * self.num_heads == hidden_dims, \ |
|
f'{"hidden_dims must be divisible by num_heads"}' |
|
scaling = float(head_dims)**-0.5 |
|
|
|
q = query * scaling |
|
k = key |
|
v = value |
|
|
|
if attn_mask is not None: |
|
assert attn_mask.dtype == torch.float32 or \ |
|
attn_mask.dtype == torch.float64 or \ |
|
attn_mask.dtype == torch.float16 or \ |
|
attn_mask.dtype == torch.uint8 or \ |
|
attn_mask.dtype == torch.bool, \ |
|
'Only float, byte, and bool types are supported for \ |
|
attn_mask' |
|
|
|
if attn_mask.dtype == torch.uint8: |
|
warnings.warn('Byte tensor for attn_mask is deprecated.\ |
|
Use bool tensor instead.') |
|
attn_mask = attn_mask.to(torch.bool) |
|
if attn_mask.dim() == 2: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
if list(attn_mask.size()) != [1, query.size(1), key.size(1)]: |
|
raise RuntimeError( |
|
'The size of the 2D attn_mask is not correct.') |
|
elif attn_mask.dim() == 3: |
|
if list(attn_mask.size()) != [ |
|
bs * self.num_heads, |
|
query.size(1), |
|
key.size(1) |
|
]: |
|
raise RuntimeError( |
|
'The size of the 3D attn_mask is not correct.') |
|
else: |
|
raise RuntimeError( |
|
"attn_mask's dimension {} is not supported".format( |
|
attn_mask.dim())) |
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dtype == int: |
|
key_padding_mask = key_padding_mask.to(torch.bool) |
|
|
|
q = q.contiguous().view(bs, tgt_len, self.num_heads, |
|
head_dims).permute(0, 2, 1, 3).flatten(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(bs, src_len, self.num_heads, |
|
head_dims).permute(0, 2, 1, |
|
3).flatten(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(bs, src_len, self.num_heads, |
|
v_head_dims).permute(0, 2, 1, |
|
3).flatten(0, 1) |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bs |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) |
|
assert list(attn_output_weights.size()) == [ |
|
bs * self.num_heads, tgt_len, src_len |
|
] |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
attn_output_weights.masked_fill_(attn_mask, float('-inf')) |
|
else: |
|
attn_output_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
attn_output_weights = attn_output_weights.view( |
|
bs, self.num_heads, tgt_len, src_len) |
|
attn_output_weights = attn_output_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2), |
|
float('-inf'), |
|
) |
|
attn_output_weights = attn_output_weights.view( |
|
bs * self.num_heads, tgt_len, src_len) |
|
|
|
attn_output_weights = F.softmax( |
|
attn_output_weights - |
|
attn_output_weights.max(dim=-1, keepdim=True)[0], |
|
dim=-1) |
|
attn_output_weights = self.attn_drop(attn_output_weights) |
|
|
|
attn_output = torch.bmm(attn_output_weights, v) |
|
assert list( |
|
attn_output.size()) == [bs * self.num_heads, tgt_len, v_head_dims] |
|
attn_output = attn_output.view(bs, self.num_heads, tgt_len, |
|
v_head_dims).permute(0, 2, 1, |
|
3).flatten(2) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
|
|
attn_output_weights = attn_output_weights.view(bs, self.num_heads, |
|
tgt_len, src_len) |
|
return attn_output, attn_output_weights.sum(dim=1) / self.num_heads |
|
|
|
def forward(self, |
|
query: Tensor, |
|
key: Tensor, |
|
query_pos: Tensor = None, |
|
ref_sine_embed: Tensor = None, |
|
key_pos: Tensor = None, |
|
attn_mask: Tensor = None, |
|
key_padding_mask: Tensor = None, |
|
is_first: bool = False) -> Tensor: |
|
"""Forward function for `ConditionalAttention`. |
|
Args: |
|
query (Tensor): The input query with shape [bs, num_queries, |
|
embed_dims]. |
|
key (Tensor): The key tensor with shape [bs, num_keys, |
|
embed_dims]. |
|
If None, the `query` will be used. Defaults to None. |
|
query_pos (Tensor): The positional encoding for query in self |
|
attention, with the same shape as `x`. If not None, it will |
|
be added to `x` before forward function. |
|
Defaults to None. |
|
query_sine_embed (Tensor): The positional encoding for query in |
|
cross attention, with the same shape as `x`. If not None, it |
|
will be added to `x` before forward function. |
|
Defaults to None. |
|
key_pos (Tensor): The positional encoding for `key`, with the |
|
same shape as `key`. Defaults to None. If not None, it will |
|
be added to `key` before forward function. If None, and |
|
`query_pos` has the same shape as `key`, then `query_pos` |
|
will be used for `key_pos`. Defaults to None. |
|
attn_mask (Tensor): ByteTensor mask with shape [num_queries, |
|
num_keys]. Same in `nn.MultiheadAttention.forward`. |
|
Defaults to None. |
|
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. |
|
Defaults to None. |
|
is_first (bool): A indicator to tell whether the current layer |
|
is the first layer of the decoder. |
|
Defaults to False. |
|
Returns: |
|
Tensor: forwarded results with shape |
|
[bs, num_queries, embed_dims]. |
|
""" |
|
|
|
if self.cross_attn: |
|
q_content = self.qcontent_proj(query) |
|
k_content = self.kcontent_proj(key) |
|
v = self.v_proj(key) |
|
|
|
bs, nq, c = q_content.size() |
|
_, hw, _ = k_content.size() |
|
|
|
k_pos = self.kpos_proj(key_pos) |
|
if is_first or self.keep_query_pos: |
|
q_pos = self.qpos_proj(query_pos) |
|
q = q_content + q_pos |
|
k = k_content + k_pos |
|
else: |
|
q = q_content |
|
k = k_content |
|
q = q.view(bs, nq, self.num_heads, c // self.num_heads) |
|
query_sine_embed = self.qpos_sine_proj(ref_sine_embed) |
|
query_sine_embed = query_sine_embed.view(bs, nq, self.num_heads, |
|
c // self.num_heads) |
|
q = torch.cat([q, query_sine_embed], dim=3).view(bs, nq, 2 * c) |
|
k = k.view(bs, hw, self.num_heads, c // self.num_heads) |
|
k_pos = k_pos.view(bs, hw, self.num_heads, c // self.num_heads) |
|
k = torch.cat([k, k_pos], dim=3).view(bs, hw, 2 * c) |
|
ca_output = self.forward_attn( |
|
query=q, |
|
key=k, |
|
value=v, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask)[0] |
|
query = query + self.proj_drop(ca_output) |
|
else: |
|
q_content = self.qcontent_proj(query) |
|
q_pos = self.qpos_proj(query_pos) |
|
k_content = self.kcontent_proj(query) |
|
k_pos = self.kpos_proj(query_pos) |
|
v = self.v_proj(query) |
|
q = q_content if q_pos is None else q_content + q_pos |
|
k = k_content if k_pos is None else k_content + k_pos |
|
sa_output = self.forward_attn( |
|
query=q, |
|
key=k, |
|
value=v, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask)[0] |
|
query = query + self.proj_drop(sa_output) |
|
|
|
return query |
|
|
|
|
|
class MLP(BaseModule): |
|
"""Very simple multi-layer perceptron (also called FFN) with relu. Mostly |
|
used in DETR series detectors. |
|
|
|
Args: |
|
input_dim (int): Feature dim of the input tensor. |
|
hidden_dim (int): Feature dim of the hidden layer. |
|
output_dim (int): Feature dim of the output tensor. |
|
num_layers (int): Number of FFN layers. As the last |
|
layer of MLP only contains FFN (Linear). |
|
""" |
|
|
|
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, |
|
num_layers: int) -> None: |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = ModuleList( |
|
Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
"""Forward function of MLP. |
|
|
|
Args: |
|
x (Tensor): The input feature, has shape |
|
(num_queries, bs, input_dim). |
|
Returns: |
|
Tensor: The output feature, has shape |
|
(num_queries, bs, output_dim). |
|
""" |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class DynamicConv(BaseModule): |
|
"""Implements Dynamic Convolution. |
|
|
|
This module generate parameters for each sample and |
|
use bmm to implement 1*1 convolution. Code is modified |
|
from the `official github repo <https://github.com/PeizeSun/ |
|
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . |
|
|
|
Args: |
|
in_channels (int): The input feature channel. |
|
Defaults to 256. |
|
feat_channels (int): The inner feature channel. |
|
Defaults to 64. |
|
out_channels (int, optional): The output feature channel. |
|
When not specified, it will be set to `in_channels` |
|
by default |
|
input_feat_shape (int): The shape of input feature. |
|
Defaults to 7. |
|
with_proj (bool): Project two-dimentional feature to |
|
one-dimentional feature. Default to True. |
|
act_cfg (dict): The activation config for DynamicConv. |
|
norm_cfg (dict): Config dict for normalization layer. Default |
|
layer normalization. |
|
init_cfg (obj:`mmengine.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int = 256, |
|
feat_channels: int = 64, |
|
out_channels: Optional[int] = None, |
|
input_feat_shape: int = 7, |
|
with_proj: bool = True, |
|
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), |
|
norm_cfg: OptConfigType = dict(type='LN'), |
|
init_cfg: OptConfigType = None) -> None: |
|
super(DynamicConv, self).__init__(init_cfg) |
|
self.in_channels = in_channels |
|
self.feat_channels = feat_channels |
|
self.out_channels_raw = out_channels |
|
self.input_feat_shape = input_feat_shape |
|
self.with_proj = with_proj |
|
self.act_cfg = act_cfg |
|
self.norm_cfg = norm_cfg |
|
self.out_channels = out_channels if out_channels else in_channels |
|
|
|
self.num_params_in = self.in_channels * self.feat_channels |
|
self.num_params_out = self.out_channels * self.feat_channels |
|
self.dynamic_layer = nn.Linear( |
|
self.in_channels, self.num_params_in + self.num_params_out) |
|
|
|
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] |
|
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] |
|
|
|
self.activation = build_activation_layer(act_cfg) |
|
|
|
num_output = self.out_channels * input_feat_shape**2 |
|
if self.with_proj: |
|
self.fc_layer = nn.Linear(num_output, self.out_channels) |
|
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] |
|
|
|
def forward(self, param_feature: Tensor, input_feature: Tensor) -> Tensor: |
|
"""Forward function for `DynamicConv`. |
|
|
|
Args: |
|
param_feature (Tensor): The feature can be used |
|
to generate the parameter, has shape |
|
(num_all_proposals, in_channels). |
|
input_feature (Tensor): Feature that |
|
interact with parameters, has shape |
|
(num_all_proposals, in_channels, H, W). |
|
|
|
Returns: |
|
Tensor: The output feature has shape |
|
(num_all_proposals, out_channels). |
|
""" |
|
input_feature = input_feature.flatten(2).permute(2, 0, 1) |
|
|
|
input_feature = input_feature.permute(1, 0, 2) |
|
parameters = self.dynamic_layer(param_feature) |
|
|
|
param_in = parameters[:, :self.num_params_in].view( |
|
-1, self.in_channels, self.feat_channels) |
|
param_out = parameters[:, -self.num_params_out:].view( |
|
-1, self.feat_channels, self.out_channels) |
|
|
|
|
|
|
|
|
|
features = torch.bmm(input_feature, param_in) |
|
features = self.norm_in(features) |
|
features = self.activation(features) |
|
|
|
|
|
features = torch.bmm(features, param_out) |
|
features = self.norm_out(features) |
|
features = self.activation(features) |
|
|
|
if self.with_proj: |
|
features = features.flatten(1) |
|
features = self.fc_layer(features) |
|
features = self.fc_norm(features) |
|
features = self.activation(features) |
|
|
|
return features |
|
|