|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm |
|
from mmengine.model import bias_init_with_prob, constant_init, normal_init |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures.bbox import distance2bbox |
|
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean |
|
from ..layers.transformer import inverse_sigmoid |
|
from ..task_modules import anchor_inside_flags |
|
from ..utils import (images_to_levels, multi_apply, sigmoid_geometric_mean, |
|
unmap) |
|
from .atss_head import ATSSHead |
|
|
|
|
|
@MODELS.register_module() |
|
class RTMDetHead(ATSSHead): |
|
"""Detection Head of RTMDet. |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
with_objectness (bool): Whether to add an objectness branch. |
|
Defaults to True. |
|
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. |
|
Default: dict(type='ReLU') |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
in_channels: int, |
|
with_objectness: bool = True, |
|
act_cfg: ConfigType = dict(type='ReLU'), |
|
**kwargs) -> None: |
|
self.act_cfg = act_cfg |
|
self.with_objectness = with_objectness |
|
super().__init__(num_classes, in_channels, **kwargs) |
|
if self.train_cfg: |
|
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) |
|
|
|
def _init_layers(self): |
|
"""Initialize layers of the head.""" |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
self.cls_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
self.reg_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
pred_pad_size = self.pred_kernel_size // 2 |
|
self.rtm_cls = nn.Conv2d( |
|
self.feat_channels, |
|
self.num_base_priors * self.cls_out_channels, |
|
self.pred_kernel_size, |
|
padding=pred_pad_size) |
|
self.rtm_reg = nn.Conv2d( |
|
self.feat_channels, |
|
self.num_base_priors * 4, |
|
self.pred_kernel_size, |
|
padding=pred_pad_size) |
|
if self.with_objectness: |
|
self.rtm_obj = nn.Conv2d( |
|
self.feat_channels, |
|
1, |
|
self.pred_kernel_size, |
|
padding=pred_pad_size) |
|
|
|
self.scales = nn.ModuleList( |
|
[Scale(1.0) for _ in self.prior_generator.strides]) |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the head.""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, mean=0, std=0.01) |
|
if is_norm(m): |
|
constant_init(m, 1) |
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.rtm_cls, std=0.01, bias=bias_cls) |
|
normal_init(self.rtm_reg, std=0.01) |
|
if self.with_objectness: |
|
normal_init(self.rtm_obj, std=0.01, bias=bias_cls) |
|
|
|
def forward(self, feats: Tuple[Tensor, ...]) -> tuple: |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
feats (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: Usually a tuple of classification scores and bbox prediction |
|
- cls_scores (list[Tensor]): Classification scores for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * num_classes. |
|
- bbox_preds (list[Tensor]): Box energies / deltas for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * 4. |
|
""" |
|
|
|
cls_scores = [] |
|
bbox_preds = [] |
|
for idx, (x, scale, stride) in enumerate( |
|
zip(feats, self.scales, self.prior_generator.strides)): |
|
cls_feat = x |
|
reg_feat = x |
|
|
|
for cls_layer in self.cls_convs: |
|
cls_feat = cls_layer(cls_feat) |
|
cls_score = self.rtm_cls(cls_feat) |
|
|
|
for reg_layer in self.reg_convs: |
|
reg_feat = reg_layer(reg_feat) |
|
|
|
if self.with_objectness: |
|
objectness = self.rtm_obj(reg_feat) |
|
cls_score = inverse_sigmoid( |
|
sigmoid_geometric_mean(cls_score, objectness)) |
|
|
|
reg_dist = scale(self.rtm_reg(reg_feat).exp()).float() * stride[0] |
|
|
|
cls_scores.append(cls_score) |
|
bbox_preds.append(reg_dist) |
|
return tuple(cls_scores), tuple(bbox_preds) |
|
|
|
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, |
|
labels: Tensor, label_weights: Tensor, |
|
bbox_targets: Tensor, assign_metrics: Tensor, |
|
stride: List[int]): |
|
"""Compute loss of a single scale level. |
|
|
|
Args: |
|
cls_score (Tensor): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W). |
|
bbox_pred (Tensor): Decoded bboxes for each scale |
|
level with shape (N, num_anchors * 4, H, W). |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors). |
|
bbox_targets (Tensor): BBox regression targets of each anchor with |
|
shape (N, num_total_anchors, 4). |
|
assign_metrics (Tensor): Assign metrics with shape |
|
(N, num_total_anchors). |
|
stride (List[int]): Downsample stride of the feature map. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert stride[0] == stride[1], 'h stride is not equal to w stride!' |
|
cls_score = cls_score.permute(0, 2, 3, 1).reshape( |
|
-1, self.cls_out_channels).contiguous() |
|
bbox_pred = bbox_pred.reshape(-1, 4) |
|
bbox_targets = bbox_targets.reshape(-1, 4) |
|
labels = labels.reshape(-1) |
|
assign_metrics = assign_metrics.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
targets = (labels, assign_metrics) |
|
|
|
loss_cls = self.loss_cls( |
|
cls_score, targets, label_weights, avg_factor=1.0) |
|
|
|
|
|
bg_class_ind = self.num_classes |
|
pos_inds = ((labels >= 0) |
|
& (labels < bg_class_ind)).nonzero().squeeze(1) |
|
|
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = bbox_targets[pos_inds] |
|
pos_bbox_pred = bbox_pred[pos_inds] |
|
|
|
pos_decode_bbox_pred = pos_bbox_pred |
|
pos_decode_bbox_targets = pos_bbox_targets |
|
|
|
|
|
pos_bbox_weight = assign_metrics[pos_inds] |
|
|
|
loss_bbox = self.loss_bbox( |
|
pos_decode_bbox_pred, |
|
pos_decode_bbox_targets, |
|
weight=pos_bbox_weight, |
|
avg_factor=1.0) |
|
else: |
|
loss_bbox = bbox_pred.sum() * 0 |
|
pos_bbox_weight = bbox_targets.new_tensor(0.) |
|
|
|
return loss_cls, loss_bbox, assign_metrics.sum(), pos_bbox_weight.sum() |
|
|
|
def loss_by_feat(self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None): |
|
"""Compute losses of the head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W) |
|
bbox_preds (list[Tensor]): Decoded box for each scale |
|
level with shape (N, num_anchors * 4, H, W) in |
|
[tl_x, tl_y, br_x, br_y] format. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.prior_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
flatten_cls_scores = torch.cat([ |
|
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, |
|
self.cls_out_channels) |
|
for cls_score in cls_scores |
|
], 1) |
|
decoded_bboxes = [] |
|
for anchor, bbox_pred in zip(anchor_list[0], bbox_preds): |
|
anchor = anchor.reshape(-1, 4) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) |
|
bbox_pred = distance2bbox(anchor, bbox_pred) |
|
decoded_bboxes.append(bbox_pred) |
|
|
|
flatten_bboxes = torch.cat(decoded_bboxes, 1) |
|
|
|
cls_reg_targets = self.get_targets( |
|
flatten_cls_scores, |
|
flatten_bboxes, |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
(anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
assign_metrics_list, sampling_results_list) = cls_reg_targets |
|
|
|
losses_cls, losses_bbox,\ |
|
cls_avg_factors, bbox_avg_factors = multi_apply( |
|
self.loss_by_feat_single, |
|
cls_scores, |
|
decoded_bboxes, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
assign_metrics_list, |
|
self.prior_generator.strides) |
|
|
|
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() |
|
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) |
|
|
|
bbox_avg_factor = reduce_mean( |
|
sum(bbox_avg_factors)).clamp_(min=1).item() |
|
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) |
|
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) |
|
|
|
def get_targets(self, |
|
cls_scores: Tensor, |
|
bbox_preds: Tensor, |
|
anchor_list: List[List[Tensor]], |
|
valid_flag_list: List[List[Tensor]], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
unmap_outputs=True): |
|
"""Compute regression and classification targets for anchors in |
|
multiple images. |
|
|
|
Args: |
|
cls_scores (Tensor): Classification predictions of images, |
|
a 3D-Tensor with shape [num_imgs, num_priors, num_classes]. |
|
bbox_preds (Tensor): Decoded bboxes predictions of one image, |
|
a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x, |
|
tl_y, br_x, br_y] format. |
|
anchor_list (list[list[Tensor]]): Multi level anchors of each |
|
image. The outer list indicates images, and the inner list |
|
corresponds to feature levels of the image. Each element of |
|
the inner list is a tensor of shape (num_anchors, 4). |
|
valid_flag_list (list[list[Tensor]]): Multi level valid flags of |
|
each image. The outer list indicates images, and the inner list |
|
corresponds to feature levels of the image. Each element of |
|
the inner list is a tensor of shape (num_anchors, ) |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. Defaults to True. |
|
|
|
Returns: |
|
tuple: a tuple containing learning targets. |
|
|
|
- anchors_list (list[list[Tensor]]): Anchors of each level. |
|
- labels_list (list[Tensor]): Labels of each level. |
|
- label_weights_list (list[Tensor]): Label weights of each |
|
level. |
|
- bbox_targets_list (list[Tensor]): BBox targets of each level. |
|
- assign_metrics_list (list[Tensor]): alignment metrics of each |
|
level. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
assert len(anchor_list) == len(valid_flag_list) == num_imgs |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
|
|
|
|
for i in range(num_imgs): |
|
assert len(anchor_list[i]) == len(valid_flag_list[i]) |
|
anchor_list[i] = torch.cat(anchor_list[i]) |
|
valid_flag_list[i] = torch.cat(valid_flag_list[i]) |
|
|
|
|
|
if batch_gt_instances_ignore is None: |
|
batch_gt_instances_ignore = [None] * num_imgs |
|
|
|
(all_anchors, all_labels, all_label_weights, all_bbox_targets, |
|
all_assign_metrics, sampling_results_list) = multi_apply( |
|
self._get_targets_single, |
|
cls_scores.detach(), |
|
bbox_preds.detach(), |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore, |
|
unmap_outputs=unmap_outputs) |
|
|
|
if any([labels is None for labels in all_labels]): |
|
return None |
|
|
|
|
|
anchors_list = images_to_levels(all_anchors, num_level_anchors) |
|
labels_list = images_to_levels(all_labels, num_level_anchors) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors) |
|
assign_metrics_list = images_to_levels(all_assign_metrics, |
|
num_level_anchors) |
|
|
|
return (anchors_list, labels_list, label_weights_list, |
|
bbox_targets_list, assign_metrics_list, sampling_results_list) |
|
|
|
def _get_targets_single(self, |
|
cls_scores: Tensor, |
|
bbox_preds: Tensor, |
|
flat_anchors: Tensor, |
|
valid_flags: Tensor, |
|
gt_instances: InstanceData, |
|
img_meta: dict, |
|
gt_instances_ignore: Optional[InstanceData] = None, |
|
unmap_outputs=True): |
|
"""Compute regression, classification targets for anchors in a single |
|
image. |
|
|
|
Args: |
|
cls_scores (list(Tensor)): Box scores for each image. |
|
bbox_preds (list(Tensor)): Box energies / deltas for each image. |
|
flat_anchors (Tensor): Multi-level anchors of the image, which are |
|
concatenated into a single tensor of shape (num_anchors ,4) |
|
valid_flags (Tensor): Multi level valid flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_anchors,). |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for current image. |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. Defaults to True. |
|
|
|
Returns: |
|
tuple: N is the number of total anchors in the image. |
|
|
|
- anchors (Tensor): All anchors in the image with shape (N, 4). |
|
- labels (Tensor): Labels of all anchors in the image with shape |
|
(N,). |
|
- label_weights (Tensor): Label weights of all anchor in the |
|
image with shape (N,). |
|
- bbox_targets (Tensor): BBox targets of all anchors in the |
|
image with shape (N, 4). |
|
- norm_alignment_metrics (Tensor): Normalized alignment metrics |
|
of all priors in the image with shape (N,). |
|
""" |
|
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, |
|
img_meta['img_shape'][:2], |
|
self.train_cfg['allowed_border']) |
|
if not inside_flags.any(): |
|
return (None, ) * 7 |
|
|
|
anchors = flat_anchors[inside_flags, :] |
|
|
|
pred_instances = InstanceData( |
|
scores=cls_scores[inside_flags, :], |
|
bboxes=bbox_preds[inside_flags, :], |
|
priors=anchors) |
|
|
|
assign_result = self.assigner.assign(pred_instances, gt_instances, |
|
gt_instances_ignore) |
|
|
|
sampling_result = self.sampler.sample(assign_result, pred_instances, |
|
gt_instances) |
|
|
|
num_valid_anchors = anchors.shape[0] |
|
bbox_targets = torch.zeros_like(anchors) |
|
labels = anchors.new_full((num_valid_anchors, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) |
|
assign_metrics = anchors.new_zeros( |
|
num_valid_anchors, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
|
|
pos_bbox_targets = sampling_result.pos_gt_bboxes |
|
bbox_targets[pos_inds, :] = pos_bbox_targets |
|
|
|
labels[pos_inds] = sampling_result.pos_gt_labels |
|
if self.train_cfg['pos_weight'] <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg['pos_weight'] |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
class_assigned_gt_inds = torch.unique( |
|
sampling_result.pos_assigned_gt_inds) |
|
for gt_inds in class_assigned_gt_inds: |
|
gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds == |
|
gt_inds] |
|
assign_metrics[gt_class_inds] = assign_result.max_overlaps[ |
|
gt_class_inds] |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_anchors.size(0) |
|
anchors = unmap(anchors, num_total_anchors, inside_flags) |
|
labels = unmap( |
|
labels, num_total_anchors, inside_flags, fill=self.num_classes) |
|
label_weights = unmap(label_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) |
|
assign_metrics = unmap(assign_metrics, num_total_anchors, |
|
inside_flags) |
|
return (anchors, labels, label_weights, bbox_targets, assign_metrics, |
|
sampling_result) |
|
|
|
def get_anchors(self, |
|
featmap_sizes: List[tuple], |
|
batch_img_metas: List[dict], |
|
device: Union[torch.device, str] = 'cuda') \ |
|
-> Tuple[List[List[Tensor]], List[List[Tensor]]]: |
|
"""Get anchors according to feature map sizes. |
|
|
|
Args: |
|
featmap_sizes (list[tuple]): Multi-level feature map sizes. |
|
batch_img_metas (list[dict]): Image meta info. |
|
device (torch.device or str): Device for returned tensors. |
|
Defaults to cuda. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- anchor_list (list[list[Tensor]]): Anchors of each image. |
|
- valid_flag_list (list[list[Tensor]]): Valid flags of each |
|
image. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
|
|
|
|
|
|
multi_level_anchors = self.prior_generator.grid_priors( |
|
featmap_sizes, device=device, with_stride=True) |
|
anchor_list = [multi_level_anchors for _ in range(num_imgs)] |
|
|
|
|
|
valid_flag_list = [] |
|
for img_id, img_meta in enumerate(batch_img_metas): |
|
multi_level_flags = self.prior_generator.valid_flags( |
|
featmap_sizes, img_meta['pad_shape'], device) |
|
valid_flag_list.append(multi_level_flags) |
|
return anchor_list, valid_flag_list |
|
|
|
|
|
@MODELS.register_module() |
|
class RTMDetSepBNHead(RTMDetHead): |
|
"""RTMDetHead with separated BN layers and shared conv layers. |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
share_conv (bool): Whether to share conv layers between stages. |
|
Defaults to True. |
|
use_depthwise (bool): Whether to use depthwise separable convolution in |
|
head. Defaults to False. |
|
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization |
|
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001). |
|
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer. |
|
Defaults to dict(type='SiLU'). |
|
pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1. |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
in_channels: int, |
|
share_conv: bool = True, |
|
use_depthwise: bool = False, |
|
norm_cfg: ConfigType = dict( |
|
type='BN', momentum=0.03, eps=0.001), |
|
act_cfg: ConfigType = dict(type='SiLU'), |
|
pred_kernel_size: int = 1, |
|
exp_on_reg=False, |
|
**kwargs) -> None: |
|
self.share_conv = share_conv |
|
self.exp_on_reg = exp_on_reg |
|
self.use_depthwise = use_depthwise |
|
super().__init__( |
|
num_classes, |
|
in_channels, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
pred_kernel_size=pred_kernel_size, |
|
**kwargs) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
conv = DepthwiseSeparableConvModule \ |
|
if self.use_depthwise else ConvModule |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
|
|
self.rtm_cls = nn.ModuleList() |
|
self.rtm_reg = nn.ModuleList() |
|
if self.with_objectness: |
|
self.rtm_obj = nn.ModuleList() |
|
for n in range(len(self.prior_generator.strides)): |
|
cls_convs = nn.ModuleList() |
|
reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
cls_convs.append( |
|
conv( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
reg_convs.append( |
|
conv( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
self.cls_convs.append(cls_convs) |
|
self.reg_convs.append(reg_convs) |
|
|
|
self.rtm_cls.append( |
|
nn.Conv2d( |
|
self.feat_channels, |
|
self.num_base_priors * self.cls_out_channels, |
|
self.pred_kernel_size, |
|
padding=self.pred_kernel_size // 2)) |
|
self.rtm_reg.append( |
|
nn.Conv2d( |
|
self.feat_channels, |
|
self.num_base_priors * 4, |
|
self.pred_kernel_size, |
|
padding=self.pred_kernel_size // 2)) |
|
if self.with_objectness: |
|
self.rtm_obj.append( |
|
nn.Conv2d( |
|
self.feat_channels, |
|
1, |
|
self.pred_kernel_size, |
|
padding=self.pred_kernel_size // 2)) |
|
|
|
if self.share_conv: |
|
for n in range(len(self.prior_generator.strides)): |
|
for i in range(self.stacked_convs): |
|
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv |
|
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the head.""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, mean=0, std=0.01) |
|
if is_norm(m): |
|
constant_init(m, 1) |
|
bias_cls = bias_init_with_prob(0.01) |
|
for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg): |
|
normal_init(rtm_cls, std=0.01, bias=bias_cls) |
|
normal_init(rtm_reg, std=0.01) |
|
if self.with_objectness: |
|
for rtm_obj in self.rtm_obj: |
|
normal_init(rtm_obj, std=0.01, bias=bias_cls) |
|
|
|
def forward(self, feats: Tuple[Tensor, ...]) -> tuple: |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
feats (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: Usually a tuple of classification scores and bbox prediction |
|
|
|
- cls_scores (tuple[Tensor]): Classification scores for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_anchors * num_classes. |
|
- bbox_preds (tuple[Tensor]): Box energies / deltas for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_anchors * 4. |
|
""" |
|
|
|
cls_scores = [] |
|
bbox_preds = [] |
|
for idx, (x, stride) in enumerate( |
|
zip(feats, self.prior_generator.strides)): |
|
cls_feat = x |
|
reg_feat = x |
|
|
|
for cls_layer in self.cls_convs[idx]: |
|
cls_feat = cls_layer(cls_feat) |
|
cls_score = self.rtm_cls[idx](cls_feat) |
|
|
|
for reg_layer in self.reg_convs[idx]: |
|
reg_feat = reg_layer(reg_feat) |
|
|
|
if self.with_objectness: |
|
objectness = self.rtm_obj[idx](reg_feat) |
|
cls_score = inverse_sigmoid( |
|
sigmoid_geometric_mean(cls_score, objectness)) |
|
if self.exp_on_reg: |
|
reg_dist = self.rtm_reg[idx](reg_feat).exp() * stride[0] |
|
else: |
|
reg_dist = self.rtm_reg[idx](reg_feat) * stride[0] |
|
cls_scores.append(cls_score) |
|
bbox_preds.append(reg_dist) |
|
return tuple(cls_scores), tuple(bbox_preds) |
|
|