|
|
|
import copy |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, Scale |
|
|
|
from mmdet.models.dense_heads.fcos_head import FCOSHead |
|
from mmdet.registry import MODELS |
|
from mmdet.utils import OptMultiConfig |
|
|
|
|
|
@MODELS.register_module() |
|
class NASFCOSHead(FCOSHead): |
|
"""Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_. |
|
|
|
It is quite similar with FCOS head, except for the searched structure of |
|
classification branch and bbox regression branch, where a structure of |
|
"dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points |
|
in multiple feature levels. Defaults to (4, 8, 16, 32, 64). |
|
regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple |
|
level points. |
|
center_sampling (bool): If true, use center sampling. |
|
Defaults to False. |
|
center_sample_radius (float): Radius of center sampling. |
|
Defaults to 1.5. |
|
norm_on_bbox (bool): If true, normalize the regression targets with |
|
FPN strides. Defaults to False. |
|
centerness_on_reg (bool): If true, position centerness on the |
|
regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. |
|
Defaults to False. |
|
conv_bias (bool or str): If specified as `auto`, it will be decided by |
|
the norm_cfg. Bias of conv will be set as True if `norm_cfg` is |
|
None, otherwise False. Defaults to "auto". |
|
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. |
|
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss. |
|
loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness |
|
loss. |
|
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and |
|
config norm layer. Defaults to |
|
``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``. |
|
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ |
|
dict], opitonal): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
*args, |
|
init_cfg: OptMultiConfig = None, |
|
**kwargs) -> None: |
|
if init_cfg is None: |
|
init_cfg = [ |
|
dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), |
|
dict( |
|
type='Normal', |
|
std=0.01, |
|
override=[ |
|
dict(name='conv_reg'), |
|
dict(name='conv_centerness'), |
|
dict( |
|
name='conv_cls', |
|
type='Normal', |
|
std=0.01, |
|
bias_prob=0.01) |
|
]), |
|
] |
|
super().__init__(*args, init_cfg=init_cfg, **kwargs) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
dconv3x3_config = dict( |
|
type='DCNv2', |
|
kernel_size=3, |
|
use_bias=True, |
|
deform_groups=2, |
|
padding=1) |
|
conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) |
|
conv1x1_config = dict(type='Conv', kernel_size=1) |
|
|
|
self.arch_config = [ |
|
dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config |
|
] |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i, op_ in enumerate(self.arch_config): |
|
op = copy.deepcopy(op_) |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
assert isinstance(op, dict) |
|
use_bias = op.pop('use_bias', False) |
|
padding = op.pop('padding', 0) |
|
kernel_size = op.pop('kernel_size') |
|
module = ConvModule( |
|
chn, |
|
self.feat_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=padding, |
|
norm_cfg=self.norm_cfg, |
|
bias=use_bias, |
|
conv_cfg=op) |
|
|
|
self.cls_convs.append(copy.deepcopy(module)) |
|
self.reg_convs.append(copy.deepcopy(module)) |
|
|
|
self.conv_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) |
|
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) |
|
|
|
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) |
|
|