|
|
|
from typing import List, Optional |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox_overlaps |
|
from mmdet.utils import InstanceList, OptInstanceList |
|
from ..utils import levels_to_images, multi_apply, unpack_gt_instances |
|
from .paa_head import PAAHead |
|
|
|
|
|
@MODELS.register_module() |
|
class LADHead(PAAHead): |
|
"""Label Assignment Head from the paper: `Improving Object Detection by |
|
Label Assignment Distillation <https://arxiv.org/pdf/2108.10520.pdf>`_""" |
|
|
|
def get_label_assignment( |
|
self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
iou_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> tuple: |
|
"""Get label assignment (from teacher). |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W) |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W) |
|
iou_preds (list[Tensor]): iou_preds for each scale |
|
level with shape (N, num_anchors * 1, H, W) |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
tuple: Returns a tuple containing label assignment variables. |
|
|
|
- labels (Tensor): Labels of all anchors, each with |
|
shape (num_anchors,). |
|
- labels_weight (Tensor): Label weights of all anchor. |
|
each with shape (num_anchors,). |
|
- bboxes_target (Tensor): BBox targets of all anchors. |
|
each with shape (num_anchors, 4). |
|
- bboxes_weight (Tensor): BBox weights of all anchors. |
|
each with shape (num_anchors, 4). |
|
- pos_inds_flatten (Tensor): Contains all index of positive |
|
sample in all anchor. |
|
- pos_anchors (Tensor): Positive anchors. |
|
- num_pos (int): Number of positive anchors. |
|
""" |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.prior_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
cls_reg_targets = self.get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore, |
|
) |
|
(labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, |
|
pos_gt_index) = cls_reg_targets |
|
cls_scores = levels_to_images(cls_scores) |
|
cls_scores = [ |
|
item.reshape(-1, self.cls_out_channels) for item in cls_scores |
|
] |
|
bbox_preds = levels_to_images(bbox_preds) |
|
bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] |
|
pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, |
|
cls_scores, bbox_preds, labels, |
|
labels_weight, bboxes_target, |
|
bboxes_weight, pos_inds) |
|
|
|
with torch.no_grad(): |
|
reassign_labels, reassign_label_weight, \ |
|
reassign_bbox_weights, num_pos = multi_apply( |
|
self.paa_reassign, |
|
pos_losses_list, |
|
labels, |
|
labels_weight, |
|
bboxes_weight, |
|
pos_inds, |
|
pos_gt_index, |
|
anchor_list) |
|
num_pos = sum(num_pos) |
|
|
|
labels = torch.cat(reassign_labels, 0).view(-1) |
|
flatten_anchors = torch.cat( |
|
[torch.cat(item, 0) for item in anchor_list]) |
|
labels_weight = torch.cat(reassign_label_weight, 0).view(-1) |
|
bboxes_target = torch.cat(bboxes_target, |
|
0).view(-1, bboxes_target[0].size(-1)) |
|
|
|
pos_inds_flatten = ((labels >= 0) |
|
& |
|
(labels < self.num_classes)).nonzero().reshape(-1) |
|
|
|
if num_pos: |
|
pos_anchors = flatten_anchors[pos_inds_flatten] |
|
else: |
|
pos_anchors = None |
|
|
|
label_assignment_results = (labels, labels_weight, bboxes_target, |
|
bboxes_weight, pos_inds_flatten, |
|
pos_anchors, num_pos) |
|
return label_assignment_results |
|
|
|
def loss(self, x: List[Tensor], label_assignment_results: tuple, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Forward train with the available label assignment (student receives |
|
from teacher). |
|
|
|
Args: |
|
x (list[Tensor]): Features from FPN. |
|
label_assignment_results (tuple): As the outputs defined in the |
|
function `self.get_label_assignment`. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
losses: (dict[str, Tensor]): A dictionary of loss components. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ |
|
= outputs |
|
|
|
outs = self(x) |
|
loss_inputs = outs + (batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat( |
|
*loss_inputs, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore, |
|
label_assignment_results=label_assignment_results) |
|
return losses |
|
|
|
def loss_by_feat(self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
iou_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
label_assignment_results: Optional[tuple] = None) -> dict: |
|
"""Compute losses of the head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W) |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W) |
|
iou_preds (list[Tensor]): iou_preds for each scale |
|
level with shape (N, num_anchors * 1, H, W) |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
label_assignment_results (tuple, optional): As the outputs defined |
|
in the function `self.get_ |
|
label_assignment`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss gmm_assignment. |
|
""" |
|
|
|
(labels, labels_weight, bboxes_target, bboxes_weight, pos_inds_flatten, |
|
pos_anchors, num_pos) = label_assignment_results |
|
|
|
cls_scores = levels_to_images(cls_scores) |
|
cls_scores = [ |
|
item.reshape(-1, self.cls_out_channels) for item in cls_scores |
|
] |
|
bbox_preds = levels_to_images(bbox_preds) |
|
bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] |
|
iou_preds = levels_to_images(iou_preds) |
|
iou_preds = [item.reshape(-1, 1) for item in iou_preds] |
|
|
|
|
|
cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) |
|
bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) |
|
iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) |
|
|
|
losses_cls = self.loss_cls( |
|
cls_scores, |
|
labels, |
|
labels_weight, |
|
avg_factor=max(num_pos, len(batch_img_metas))) |
|
if num_pos: |
|
pos_bbox_pred = self.bbox_coder.decode( |
|
pos_anchors, bbox_preds[pos_inds_flatten]) |
|
pos_bbox_target = bboxes_target[pos_inds_flatten] |
|
iou_target = bbox_overlaps( |
|
pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) |
|
losses_iou = self.loss_centerness( |
|
iou_preds[pos_inds_flatten], |
|
iou_target.unsqueeze(-1), |
|
avg_factor=num_pos) |
|
losses_bbox = self.loss_bbox( |
|
pos_bbox_pred, pos_bbox_target, avg_factor=num_pos) |
|
|
|
else: |
|
losses_iou = iou_preds.sum() * 0 |
|
losses_bbox = bbox_preds.sum() * 0 |
|
|
|
return dict( |
|
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) |
|
|