|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.ops import DeformConv2d, MaskedConv2d |
|
from mmengine.model import BaseModule |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, |
|
OptInstanceList) |
|
from ..layers import multiclass_nms |
|
from ..task_modules.prior_generators import anchor_inside_flags, calc_region |
|
from ..task_modules.samplers import PseudoSampler |
|
from ..utils import images_to_levels, multi_apply, unmap |
|
from .anchor_head import AnchorHead |
|
|
|
|
|
class FeatureAdaption(BaseModule): |
|
"""Feature Adaption Module. |
|
|
|
Feature Adaption Module is implemented based on DCN v1. |
|
It uses anchor shape prediction rather than feature map to |
|
predict offsets of deform conv layer. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input feature map. |
|
out_channels (int): Number of channels in the output feature map. |
|
kernel_size (int): Deformable conv kernel size. Defaults to 3. |
|
deform_groups (int): Deformable conv group size. Defaults to 4. |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ |
|
list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int = 3, |
|
deform_groups: int = 4, |
|
init_cfg: MultiConfig = dict( |
|
type='Normal', |
|
layer='Conv2d', |
|
std=0.1, |
|
override=dict(type='Normal', name='conv_adaption', std=0.01)) |
|
) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
offset_channels = kernel_size * kernel_size * 2 |
|
self.conv_offset = nn.Conv2d( |
|
2, deform_groups * offset_channels, 1, bias=False) |
|
self.conv_adaption = DeformConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
padding=(kernel_size - 1) // 2, |
|
deform_groups=deform_groups) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x: Tensor, shape: Tensor) -> Tensor: |
|
offset = self.conv_offset(shape.detach()) |
|
x = self.relu(self.conv_adaption(x, offset)) |
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class GuidedAnchorHead(AnchorHead): |
|
"""Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.). |
|
|
|
This GuidedAnchorHead will predict high-quality feature guided |
|
anchors and locations where anchors will be kept in inference. |
|
There are mainly 3 categories of bounding-boxes. |
|
|
|
- Sampled 9 pairs for target assignment. (approxes) |
|
- The square boxes where the predicted anchors are based on. (squares) |
|
- Guided anchors. |
|
|
|
Please refer to https://arxiv.org/abs/1901.03278 for more details. |
|
|
|
Args: |
|
num_classes (int): Number of classes. |
|
in_channels (int): Number of channels in the input feature map. |
|
feat_channels (int): Number of hidden channels. Defaults to 256. |
|
approx_anchor_generator (:obj:`ConfigDict` or dict): Config dict |
|
for approx generator |
|
square_anchor_generator (:obj:`ConfigDict` or dict): Config dict |
|
for square generator |
|
anchor_coder (:obj:`ConfigDict` or dict): Config dict for anchor coder |
|
bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder |
|
reg_decoded_bbox (bool): If true, the regression loss would be |
|
applied directly on decoded bounding boxes, converting both |
|
the predicted boxes and regression targets to absolute |
|
coordinates format. Defaults to False. It should be `True` when |
|
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. |
|
deform_groups: (int): Group number of DCN in FeatureAdaption module. |
|
Defaults to 4. |
|
loc_filter_thr (float): Threshold to filter out unconcerned regions. |
|
Defaults to 0.01. |
|
loss_loc (:obj:`ConfigDict` or dict): Config of location loss. |
|
loss_shape (:obj:`ConfigDict` or dict): Config of anchor shape loss. |
|
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. |
|
loss_bbox (:obj:`ConfigDict` or dict): Config of bbox regression loss. |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ |
|
list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
in_channels: int, |
|
feat_channels: int = 256, |
|
approx_anchor_generator: ConfigType = dict( |
|
type='AnchorGenerator', |
|
octave_base_scale=8, |
|
scales_per_octave=3, |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[4, 8, 16, 32, 64]), |
|
square_anchor_generator: ConfigType = dict( |
|
type='AnchorGenerator', |
|
ratios=[1.0], |
|
scales=[8], |
|
strides=[4, 8, 16, 32, 64]), |
|
anchor_coder: ConfigType = dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
bbox_coder: ConfigType = dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
reg_decoded_bbox: bool = False, |
|
deform_groups: int = 4, |
|
loc_filter_thr: float = 0.01, |
|
train_cfg: OptConfigType = None, |
|
test_cfg: OptConfigType = None, |
|
loss_loc: ConfigType = dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_shape: ConfigType = dict( |
|
type='BoundedIoULoss', beta=0.2, loss_weight=1.0), |
|
loss_cls: ConfigType = dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox: ConfigType = dict( |
|
type='SmoothL1Loss', beta=1.0, loss_weight=1.0), |
|
init_cfg: MultiConfig = dict( |
|
type='Normal', |
|
layer='Conv2d', |
|
std=0.01, |
|
override=dict( |
|
type='Normal', name='conv_loc', std=0.01, lbias_prob=0.01)) |
|
) -> None: |
|
super(AnchorHead, self).__init__(init_cfg=init_cfg) |
|
self.in_channels = in_channels |
|
self.num_classes = num_classes |
|
self.feat_channels = feat_channels |
|
self.deform_groups = deform_groups |
|
self.loc_filter_thr = loc_filter_thr |
|
|
|
|
|
assert (approx_anchor_generator['octave_base_scale'] == |
|
square_anchor_generator['scales'][0]) |
|
assert (approx_anchor_generator['strides'] == |
|
square_anchor_generator['strides']) |
|
self.approx_anchor_generator = TASK_UTILS.build( |
|
approx_anchor_generator) |
|
self.square_anchor_generator = TASK_UTILS.build( |
|
square_anchor_generator) |
|
self.approxs_per_octave = self.approx_anchor_generator \ |
|
.num_base_priors[0] |
|
|
|
self.reg_decoded_bbox = reg_decoded_bbox |
|
|
|
|
|
self.num_base_priors = self.square_anchor_generator.num_base_priors[0] |
|
|
|
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) |
|
self.loc_focal_loss = loss_loc['type'] in ['FocalLoss'] |
|
if self.use_sigmoid_cls: |
|
self.cls_out_channels = self.num_classes |
|
else: |
|
self.cls_out_channels = self.num_classes + 1 |
|
|
|
|
|
self.anchor_coder = TASK_UTILS.build(anchor_coder) |
|
self.bbox_coder = TASK_UTILS.build(bbox_coder) |
|
|
|
|
|
self.loss_loc = MODELS.build(loss_loc) |
|
self.loss_shape = MODELS.build(loss_shape) |
|
self.loss_cls = MODELS.build(loss_cls) |
|
self.loss_bbox = MODELS.build(loss_bbox) |
|
|
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
if self.train_cfg: |
|
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) |
|
|
|
if train_cfg.get('sampler', None) is not None: |
|
self.sampler = TASK_UTILS.build( |
|
self.train_cfg['sampler'], default_args=dict(context=self)) |
|
else: |
|
self.sampler = PseudoSampler() |
|
|
|
self.ga_assigner = TASK_UTILS.build(self.train_cfg['ga_assigner']) |
|
if train_cfg.get('ga_sampler', None) is not None: |
|
self.ga_sampler = TASK_UTILS.build( |
|
self.train_cfg['ga_sampler'], |
|
default_args=dict(context=self)) |
|
else: |
|
self.ga_sampler = PseudoSampler() |
|
|
|
self._init_layers() |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv_loc = nn.Conv2d(self.in_channels, 1, 1) |
|
self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2, |
|
1) |
|
self.feature_adaption = FeatureAdaption( |
|
self.in_channels, |
|
self.feat_channels, |
|
kernel_size=3, |
|
deform_groups=self.deform_groups) |
|
self.conv_cls = MaskedConv2d( |
|
self.feat_channels, self.num_base_priors * self.cls_out_channels, |
|
1) |
|
self.conv_reg = MaskedConv2d(self.feat_channels, |
|
self.num_base_priors * 4, 1) |
|
|
|
def forward_single(self, x: Tensor) -> Tuple[Tensor]: |
|
"""Forward feature of a single scale level.""" |
|
loc_pred = self.conv_loc(x) |
|
shape_pred = self.conv_shape(x) |
|
x = self.feature_adaption(x, shape_pred) |
|
|
|
if not self.training: |
|
mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr |
|
else: |
|
mask = None |
|
cls_score = self.conv_cls(x, mask) |
|
bbox_pred = self.conv_reg(x, mask) |
|
return cls_score, bbox_pred, shape_pred, loc_pred |
|
|
|
def forward(self, x: List[Tensor]) -> Tuple[List[Tensor]]: |
|
"""Forward features from the upstream network.""" |
|
return multi_apply(self.forward_single, x) |
|
|
|
def get_sampled_approxs(self, |
|
featmap_sizes: List[Tuple[int, int]], |
|
batch_img_metas: List[dict], |
|
device: str = 'cuda') -> tuple: |
|
"""Get sampled approxs and inside flags according to feature map sizes. |
|
|
|
Args: |
|
featmap_sizes (list[tuple]): Multi-level feature map sizes. |
|
batch_img_metas (list[dict]): Image meta info. |
|
device (str): device for returned tensors |
|
|
|
Returns: |
|
tuple: approxes of each image, inside flags of each image |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
|
|
|
|
|
|
multi_level_approxs = self.approx_anchor_generator.grid_priors( |
|
featmap_sizes, device=device) |
|
approxs_list = [multi_level_approxs for _ in range(num_imgs)] |
|
|
|
|
|
inside_flag_list = [] |
|
for img_id, img_meta in enumerate(batch_img_metas): |
|
multi_level_flags = [] |
|
multi_level_approxs = approxs_list[img_id] |
|
|
|
|
|
multi_level_approx_flags = self.approx_anchor_generator \ |
|
.valid_flags(featmap_sizes, |
|
img_meta['pad_shape'], |
|
device=device) |
|
|
|
for i, flags in enumerate(multi_level_approx_flags): |
|
approxs = multi_level_approxs[i] |
|
inside_flags_list = [] |
|
for j in range(self.approxs_per_octave): |
|
split_valid_flags = flags[j::self.approxs_per_octave] |
|
split_approxs = approxs[j::self.approxs_per_octave, :] |
|
inside_flags = anchor_inside_flags( |
|
split_approxs, split_valid_flags, |
|
img_meta['img_shape'][:2], |
|
self.train_cfg['allowed_border']) |
|
inside_flags_list.append(inside_flags) |
|
|
|
|
|
inside_flags = ( |
|
torch.stack(inside_flags_list, 0).sum(dim=0) > 0) |
|
multi_level_flags.append(inside_flags) |
|
inside_flag_list.append(multi_level_flags) |
|
return approxs_list, inside_flag_list |
|
|
|
def get_anchors(self, |
|
featmap_sizes: List[Tuple[int, int]], |
|
shape_preds: List[Tensor], |
|
loc_preds: List[Tensor], |
|
batch_img_metas: List[dict], |
|
use_loc_filter: bool = False, |
|
device: str = 'cuda') -> tuple: |
|
"""Get squares according to feature map sizes and guided anchors. |
|
|
|
Args: |
|
featmap_sizes (list[tuple]): Multi-level feature map sizes. |
|
shape_preds (list[tensor]): Multi-level shape predictions. |
|
loc_preds (list[tensor]): Multi-level location predictions. |
|
batch_img_metas (list[dict]): Image meta info. |
|
use_loc_filter (bool): Use loc filter or not. Defaults to False |
|
device (str): device for returned tensors. |
|
Defaults to `cuda`. |
|
|
|
Returns: |
|
tuple: square approxs of each image, guided anchors of each image, |
|
loc masks of each image. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
num_levels = len(featmap_sizes) |
|
|
|
|
|
|
|
multi_level_squares = self.square_anchor_generator.grid_priors( |
|
featmap_sizes, device=device) |
|
squares_list = [multi_level_squares for _ in range(num_imgs)] |
|
|
|
|
|
guided_anchors_list = [] |
|
loc_mask_list = [] |
|
for img_id, img_meta in enumerate(batch_img_metas): |
|
multi_level_guided_anchors = [] |
|
multi_level_loc_mask = [] |
|
for i in range(num_levels): |
|
squares = squares_list[img_id][i] |
|
shape_pred = shape_preds[i][img_id] |
|
loc_pred = loc_preds[i][img_id] |
|
guided_anchors, loc_mask = self._get_guided_anchors_single( |
|
squares, |
|
shape_pred, |
|
loc_pred, |
|
use_loc_filter=use_loc_filter) |
|
multi_level_guided_anchors.append(guided_anchors) |
|
multi_level_loc_mask.append(loc_mask) |
|
guided_anchors_list.append(multi_level_guided_anchors) |
|
loc_mask_list.append(multi_level_loc_mask) |
|
return squares_list, guided_anchors_list, loc_mask_list |
|
|
|
def _get_guided_anchors_single( |
|
self, |
|
squares: Tensor, |
|
shape_pred: Tensor, |
|
loc_pred: Tensor, |
|
use_loc_filter: bool = False) -> Tuple[Tensor]: |
|
"""Get guided anchors and loc masks for a single level. |
|
|
|
Args: |
|
squares (tensor): Squares of a single level. |
|
shape_pred (tensor): Shape predictions of a single level. |
|
loc_pred (tensor): Loc predictions of a single level. |
|
use_loc_filter (list[tensor]): Use loc filter or not. |
|
Defaults to False. |
|
|
|
Returns: |
|
tuple: guided anchors, location masks |
|
""" |
|
|
|
loc_pred = loc_pred.sigmoid().detach() |
|
if use_loc_filter: |
|
loc_mask = loc_pred >= self.loc_filter_thr |
|
else: |
|
loc_mask = loc_pred >= 0.0 |
|
mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors) |
|
mask = mask.contiguous().view(-1) |
|
|
|
squares = squares[mask] |
|
anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view( |
|
-1, 2).detach()[mask] |
|
bbox_deltas = anchor_deltas.new_full(squares.size(), 0) |
|
bbox_deltas[:, 2:] = anchor_deltas |
|
guided_anchors = self.anchor_coder.decode( |
|
squares, bbox_deltas, wh_ratio_clip=1e-6) |
|
return guided_anchors, mask |
|
|
|
def ga_loc_targets(self, batch_gt_instances: InstanceList, |
|
featmap_sizes: List[Tuple[int, int]]) -> tuple: |
|
"""Compute location targets for guided anchoring. |
|
|
|
Each feature map is divided into positive, negative and ignore regions. |
|
- positive regions: target 1, weight 1 |
|
- ignore regions: target 0, weight 0 |
|
- negative regions: target 0, weight 0.1 |
|
|
|
Args: |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
featmap_sizes (list[tuple]): Multi level sizes of each feature |
|
maps. |
|
|
|
Returns: |
|
tuple: Returns a tuple containing location targets. |
|
""" |
|
anchor_scale = self.approx_anchor_generator.octave_base_scale |
|
anchor_strides = self.approx_anchor_generator.strides |
|
|
|
for stride in anchor_strides: |
|
assert (stride[0] == stride[1]) |
|
anchor_strides = [stride[0] for stride in anchor_strides] |
|
|
|
center_ratio = self.train_cfg['center_ratio'] |
|
ignore_ratio = self.train_cfg['ignore_ratio'] |
|
img_per_gpu = len(batch_gt_instances) |
|
num_lvls = len(featmap_sizes) |
|
r1 = (1 - center_ratio) / 2 |
|
r2 = (1 - ignore_ratio) / 2 |
|
all_loc_targets = [] |
|
all_loc_weights = [] |
|
all_ignore_map = [] |
|
for lvl_id in range(num_lvls): |
|
h, w = featmap_sizes[lvl_id] |
|
loc_targets = torch.zeros( |
|
img_per_gpu, |
|
1, |
|
h, |
|
w, |
|
device=batch_gt_instances[0].bboxes.device, |
|
dtype=torch.float32) |
|
loc_weights = torch.full_like(loc_targets, -1) |
|
ignore_map = torch.zeros_like(loc_targets) |
|
all_loc_targets.append(loc_targets) |
|
all_loc_weights.append(loc_weights) |
|
all_ignore_map.append(ignore_map) |
|
for img_id in range(img_per_gpu): |
|
gt_bboxes = batch_gt_instances[img_id].bboxes |
|
scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * |
|
(gt_bboxes[:, 3] - gt_bboxes[:, 1])) |
|
min_anchor_size = scale.new_full( |
|
(1, ), float(anchor_scale * anchor_strides[0])) |
|
|
|
target_lvls = torch.floor( |
|
torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) |
|
target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() |
|
for gt_id in range(gt_bboxes.size(0)): |
|
lvl = target_lvls[gt_id].item() |
|
|
|
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl] |
|
|
|
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( |
|
gt_, r2, featmap_sizes[lvl]) |
|
|
|
ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region( |
|
gt_, r1, featmap_sizes[lvl]) |
|
all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, |
|
ctr_x1:ctr_x2 + 1] = 1 |
|
all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1, |
|
ignore_x1:ignore_x2 + 1] = 0 |
|
all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, |
|
ctr_x1:ctr_x2 + 1] = 1 |
|
|
|
if lvl > 0: |
|
d_lvl = lvl - 1 |
|
|
|
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl] |
|
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( |
|
gt_, r2, featmap_sizes[d_lvl]) |
|
all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, |
|
ignore_x1:ignore_x2 + 1] = 1 |
|
|
|
if lvl < num_lvls - 1: |
|
u_lvl = lvl + 1 |
|
|
|
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl] |
|
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( |
|
gt_, r2, featmap_sizes[u_lvl]) |
|
all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, |
|
ignore_x1:ignore_x2 + 1] = 1 |
|
for lvl_id in range(num_lvls): |
|
|
|
all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0) |
|
& (all_ignore_map[lvl_id] > 0)] = 0 |
|
|
|
all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1 |
|
|
|
loc_avg_factor = sum( |
|
[t.size(0) * t.size(-1) * t.size(-2) |
|
for t in all_loc_targets]) / 200 |
|
return all_loc_targets, all_loc_weights, loc_avg_factor |
|
|
|
def _ga_shape_target_single(self, |
|
flat_approxs: Tensor, |
|
inside_flags: Tensor, |
|
flat_squares: Tensor, |
|
gt_instances: InstanceData, |
|
gt_instances_ignore: Optional[InstanceData], |
|
img_meta: dict, |
|
unmap_outputs: bool = True) -> tuple: |
|
"""Compute guided anchoring targets. |
|
|
|
This function returns sampled anchors and gt bboxes directly |
|
rather than calculates regression targets. |
|
|
|
Args: |
|
flat_approxs (Tensor): flat approxs of a single image, |
|
shape (n, 4) |
|
inside_flags (Tensor): inside flags of a single image, |
|
shape (n, ). |
|
flat_squares (Tensor): flat squares of a single image, |
|
shape (approxs_per_octave * n, 4) |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
img_meta (dict): Meta info of a single image. |
|
unmap_outputs (bool): unmap outputs or not. |
|
|
|
Returns: |
|
tuple: Returns a tuple containing shape targets of each image. |
|
""" |
|
if not inside_flags.any(): |
|
raise ValueError( |
|
'There is no valid anchor inside the image boundary. Please ' |
|
'check the image size and anchor sizes, or set ' |
|
'``allowed_border`` to -1 to skip the condition.') |
|
|
|
num_square = flat_squares.size(0) |
|
approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4) |
|
approxs = approxs[inside_flags, ...] |
|
squares = flat_squares[inside_flags, :] |
|
|
|
pred_instances = InstanceData() |
|
pred_instances.priors = squares |
|
pred_instances.approxs = approxs |
|
|
|
assign_result = self.ga_assigner.assign( |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances, |
|
gt_instances_ignore=gt_instances_ignore) |
|
sampling_result = self.ga_sampler.sample( |
|
assign_result=assign_result, |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances) |
|
|
|
bbox_anchors = torch.zeros_like(squares) |
|
bbox_gts = torch.zeros_like(squares) |
|
bbox_weights = torch.zeros_like(squares) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes |
|
bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes |
|
bbox_weights[pos_inds, :] = 1.0 |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_squares.size(0) |
|
bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags) |
|
bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags) |
|
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) |
|
|
|
return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds, |
|
sampling_result) |
|
|
|
def ga_shape_targets(self, |
|
approx_list: List[List[Tensor]], |
|
inside_flag_list: List[List[Tensor]], |
|
square_list: List[List[Tensor]], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
unmap_outputs: bool = True) -> tuple: |
|
"""Compute guided anchoring targets. |
|
|
|
Args: |
|
approx_list (list[list[Tensor]]): Multi level approxs of each |
|
image. |
|
inside_flag_list (list[list[Tensor]]): Multi level inside flags |
|
of each image. |
|
square_list (list[list[Tensor]]): Multi level squares of each |
|
image. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): unmap outputs or not. Defaults to None. |
|
|
|
Returns: |
|
tuple: Returns a tuple containing shape targets. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
assert len(approx_list) == len(inside_flag_list) == len( |
|
square_list) == num_imgs |
|
|
|
num_level_squares = [squares.size(0) for squares in square_list[0]] |
|
|
|
inside_flag_flat_list = [] |
|
approx_flat_list = [] |
|
square_flat_list = [] |
|
for i in range(num_imgs): |
|
assert len(square_list[i]) == len(inside_flag_list[i]) |
|
inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) |
|
approx_flat_list.append(torch.cat(approx_list[i])) |
|
square_flat_list.append(torch.cat(square_list[i])) |
|
|
|
|
|
if batch_gt_instances_ignore is None: |
|
batch_gt_instances_ignore = [None for _ in range(num_imgs)] |
|
(all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list, |
|
neg_inds_list, sampling_results_list) = multi_apply( |
|
self._ga_shape_target_single, |
|
approx_flat_list, |
|
inside_flag_flat_list, |
|
square_flat_list, |
|
batch_gt_instances, |
|
batch_gt_instances_ignore, |
|
batch_img_metas, |
|
unmap_outputs=unmap_outputs) |
|
|
|
avg_factor = sum( |
|
[results.avg_factor for results in sampling_results_list]) |
|
|
|
bbox_anchors_list = images_to_levels(all_bbox_anchors, |
|
num_level_squares) |
|
bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_squares) |
|
return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, |
|
avg_factor) |
|
|
|
def loss_shape_single(self, shape_pred: Tensor, bbox_anchors: Tensor, |
|
bbox_gts: Tensor, anchor_weights: Tensor, |
|
avg_factor: int) -> Tensor: |
|
"""Compute shape loss in single level.""" |
|
shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2) |
|
bbox_anchors = bbox_anchors.contiguous().view(-1, 4) |
|
bbox_gts = bbox_gts.contiguous().view(-1, 4) |
|
anchor_weights = anchor_weights.contiguous().view(-1, 4) |
|
bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0) |
|
bbox_deltas[:, 2:] += shape_pred |
|
|
|
inds = torch.nonzero( |
|
anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1) |
|
bbox_deltas_ = bbox_deltas[inds] |
|
bbox_anchors_ = bbox_anchors[inds] |
|
bbox_gts_ = bbox_gts[inds] |
|
anchor_weights_ = anchor_weights[inds] |
|
pred_anchors_ = self.anchor_coder.decode( |
|
bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6) |
|
loss_shape = self.loss_shape( |
|
pred_anchors_, bbox_gts_, anchor_weights_, avg_factor=avg_factor) |
|
return loss_shape |
|
|
|
def loss_loc_single(self, loc_pred: Tensor, loc_target: Tensor, |
|
loc_weight: Tensor, avg_factor: float) -> Tensor: |
|
"""Compute location loss in single level.""" |
|
loss_loc = self.loss_loc( |
|
loc_pred.reshape(-1, 1), |
|
loc_target.reshape(-1).long(), |
|
loc_weight.reshape(-1), |
|
avg_factor=avg_factor) |
|
return loss_loc |
|
|
|
def loss_by_feat( |
|
self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
shape_preds: List[Tensor], |
|
loc_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> dict: |
|
"""Calculate the loss based on the features extracted by the detection |
|
head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
has shape (N, num_anchors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W). |
|
shape_preds (list[Tensor]): shape predictions for each scale |
|
level with shape (N, 1, H, W). |
|
loc_preds (list[Tensor]): location predictions for each scale |
|
level with shape (N, num_anchors * 2, H, W). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
|
|
|
|
loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets( |
|
batch_gt_instances, featmap_sizes) |
|
|
|
|
|
approxs_list, inside_flag_list = self.get_sampled_approxs( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
squares_list, guided_anchors_list, _ = self.get_anchors( |
|
featmap_sizes, |
|
shape_preds, |
|
loc_preds, |
|
batch_img_metas, |
|
device=device) |
|
|
|
|
|
shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list, |
|
squares_list, batch_gt_instances, |
|
batch_img_metas) |
|
(bbox_anchors_list, bbox_gts_list, anchor_weights_list, |
|
ga_avg_factor) = shape_targets |
|
|
|
|
|
cls_reg_targets = self.get_targets( |
|
guided_anchors_list, |
|
inside_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
avg_factor) = cls_reg_targets |
|
|
|
|
|
num_level_anchors = [ |
|
anchors.size(0) for anchors in guided_anchors_list[0] |
|
] |
|
|
|
concat_anchor_list = [] |
|
for i in range(len(guided_anchors_list)): |
|
concat_anchor_list.append(torch.cat(guided_anchors_list[i])) |
|
all_anchor_list = images_to_levels(concat_anchor_list, |
|
num_level_anchors) |
|
|
|
|
|
losses_cls, losses_bbox = multi_apply( |
|
self.loss_by_feat_single, |
|
cls_scores, |
|
bbox_preds, |
|
all_anchor_list, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
bbox_weights_list, |
|
avg_factor=avg_factor) |
|
|
|
|
|
losses_loc = [] |
|
for i in range(len(loc_preds)): |
|
loss_loc = self.loss_loc_single( |
|
loc_preds[i], |
|
loc_targets[i], |
|
loc_weights[i], |
|
avg_factor=loc_avg_factor) |
|
losses_loc.append(loss_loc) |
|
|
|
|
|
losses_shape = [] |
|
for i in range(len(shape_preds)): |
|
loss_shape = self.loss_shape_single( |
|
shape_preds[i], |
|
bbox_anchors_list[i], |
|
bbox_gts_list[i], |
|
anchor_weights_list[i], |
|
avg_factor=ga_avg_factor) |
|
losses_shape.append(loss_shape) |
|
|
|
return dict( |
|
loss_cls=losses_cls, |
|
loss_bbox=losses_bbox, |
|
loss_shape=losses_shape, |
|
loss_loc=losses_loc) |
|
|
|
def predict_by_feat(self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
shape_preds: List[Tensor], |
|
loc_preds: List[Tensor], |
|
batch_img_metas: List[dict], |
|
cfg: OptConfigType = None, |
|
rescale: bool = False) -> InstanceList: |
|
"""Transform a batch of output features extracted from the head into |
|
bbox results. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Classification scores for all |
|
scale levels, each is a 4D-tensor, has shape |
|
(batch_size, num_priors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas for all |
|
scale levels, each is a 4D-tensor, has shape |
|
(batch_size, num_priors * 4, H, W). |
|
shape_preds (list[Tensor]): shape predictions for each scale |
|
level with shape (N, 1, H, W). |
|
loc_preds (list[Tensor]): location predictions for each scale |
|
level with shape (N, num_anchors * 2, H, W). |
|
batch_img_metas (list[dict], Optional): Batch image meta info. |
|
Defaults to None. |
|
cfg (ConfigDict, optional): Test / postprocessing |
|
configuration, if None, test_cfg would be used. |
|
Defaults to None. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Object detection results of each image |
|
after the post process. Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), the last |
|
dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len( |
|
loc_preds) |
|
num_levels = len(cls_scores) |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
device = cls_scores[0].device |
|
|
|
_, guided_anchors, loc_masks = self.get_anchors( |
|
featmap_sizes, |
|
shape_preds, |
|
loc_preds, |
|
batch_img_metas, |
|
use_loc_filter=not self.training, |
|
device=device) |
|
result_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score_list = [ |
|
cls_scores[i][img_id].detach() for i in range(num_levels) |
|
] |
|
bbox_pred_list = [ |
|
bbox_preds[i][img_id].detach() for i in range(num_levels) |
|
] |
|
guided_anchor_list = [ |
|
guided_anchors[img_id][i].detach() for i in range(num_levels) |
|
] |
|
loc_mask_list = [ |
|
loc_masks[img_id][i].detach() for i in range(num_levels) |
|
] |
|
proposals = self._predict_by_feat_single( |
|
cls_scores=cls_score_list, |
|
bbox_preds=bbox_pred_list, |
|
mlvl_anchors=guided_anchor_list, |
|
mlvl_masks=loc_mask_list, |
|
img_meta=batch_img_metas[img_id], |
|
cfg=cfg, |
|
rescale=rescale) |
|
result_list.append(proposals) |
|
return result_list |
|
|
|
def _predict_by_feat_single(self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
mlvl_anchors: List[Tensor], |
|
mlvl_masks: List[Tensor], |
|
img_meta: dict, |
|
cfg: ConfigType, |
|
rescale: bool = False) -> InstanceData: |
|
"""Transform a single image's features extracted from the head into |
|
bbox results. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores from all scale |
|
levels of a single image, each item has shape |
|
(num_priors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas from |
|
all scale levels of a single image, each item has shape |
|
(num_priors * 4, H, W). |
|
mlvl_anchors (list[Tensor]): Each element in the list is |
|
the anchors of a single level in feature pyramid. it has |
|
shape (num_priors, 4). |
|
mlvl_masks (list[Tensor]): Each element in the list is location |
|
masks of a single level. |
|
img_meta (dict): Image meta info. |
|
cfg (:obj:`ConfigDict` or dict): Test / postprocessing |
|
configuration, if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
:obj:`InstanceData`: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), the last |
|
dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
cfg = self.test_cfg if cfg is None else cfg |
|
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) |
|
mlvl_bbox_preds = [] |
|
mlvl_valid_anchors = [] |
|
mlvl_scores = [] |
|
for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds, |
|
mlvl_anchors, |
|
mlvl_masks): |
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] |
|
|
|
if mask.sum() == 0: |
|
continue |
|
|
|
cls_score = cls_score.permute(1, 2, |
|
0).reshape(-1, self.cls_out_channels) |
|
if self.use_sigmoid_cls: |
|
scores = cls_score.sigmoid() |
|
else: |
|
scores = cls_score.softmax(-1) |
|
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) |
|
|
|
|
|
scores = scores[mask, :] |
|
bbox_pred = bbox_pred[mask, :] |
|
if scores.dim() == 0: |
|
anchors = anchors.unsqueeze(0) |
|
scores = scores.unsqueeze(0) |
|
bbox_pred = bbox_pred.unsqueeze(0) |
|
|
|
nms_pre = cfg.get('nms_pre', -1) |
|
if nms_pre > 0 and scores.shape[0] > nms_pre: |
|
if self.use_sigmoid_cls: |
|
max_scores, _ = scores.max(dim=1) |
|
else: |
|
|
|
|
|
|
|
max_scores, _ = scores[:, :-1].max(dim=1) |
|
_, topk_inds = max_scores.topk(nms_pre) |
|
anchors = anchors[topk_inds, :] |
|
bbox_pred = bbox_pred[topk_inds, :] |
|
scores = scores[topk_inds, :] |
|
|
|
mlvl_bbox_preds.append(bbox_pred) |
|
mlvl_valid_anchors.append(anchors) |
|
mlvl_scores.append(scores) |
|
|
|
mlvl_bbox_preds = torch.cat(mlvl_bbox_preds) |
|
mlvl_anchors = torch.cat(mlvl_valid_anchors) |
|
mlvl_scores = torch.cat(mlvl_scores) |
|
mlvl_bboxes = self.bbox_coder.decode( |
|
mlvl_anchors, mlvl_bbox_preds, max_shape=img_meta['img_shape']) |
|
|
|
if rescale: |
|
assert img_meta.get('scale_factor') is not None |
|
mlvl_bboxes /= mlvl_bboxes.new_tensor( |
|
img_meta['scale_factor']).repeat((1, 2)) |
|
|
|
if self.use_sigmoid_cls: |
|
|
|
|
|
|
|
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) |
|
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) |
|
|
|
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, |
|
cfg.score_thr, cfg.nms, |
|
cfg.max_per_img) |
|
|
|
results = InstanceData() |
|
results.bboxes = det_bboxes[:, :-1] |
|
results.scores = det_bboxes[:, -1] |
|
results.labels = det_labels |
|
return results |
|
|