|
|
|
from typing import Dict, List, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import Linear |
|
from mmcv.cnn.bricks.transformer import FFN |
|
from mmengine.model import BaseModule |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
from mmcv.ops.nms import nms |
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh |
|
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList, |
|
OptMultiConfig, reduce_mean) |
|
from ..utils import multi_apply |
|
|
|
|
|
@MODELS.register_module() |
|
class DETRHead(BaseModule): |
|
r"""Head of DETR. DETR:End-to-End Object Detection with Transformers. |
|
|
|
More details can be found in the `paper |
|
<https://arxiv.org/pdf/2005.12872>`_ . |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background. |
|
embed_dims (int): The dims of Transformer embedding. |
|
num_reg_fcs (int): Number of fully-connected layers used in `FFN`, |
|
which is then used for the regression head. Defaults to 2. |
|
sync_cls_avg_factor (bool): Whether to sync the `avg_factor` of |
|
all ranks. Default to `False`. |
|
loss_cls (:obj:`ConfigDict` or dict): Config of the classification |
|
loss. Defaults to `CrossEntropyLoss`. |
|
loss_bbox (:obj:`ConfigDict` or dict): Config of the regression bbox |
|
loss. Defaults to `L1Loss`. |
|
loss_iou (:obj:`ConfigDict` or dict): Config of the regression iou |
|
loss. Defaults to `GIoULoss`. |
|
train_cfg (:obj:`ConfigDict` or dict): Training config of transformer |
|
head. |
|
test_cfg (:obj:`ConfigDict` or dict): Testing config of transformer |
|
head. |
|
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control |
|
the initialization. Defaults to None. |
|
""" |
|
|
|
_version = 2 |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
embed_dims: int = 256, |
|
num_reg_fcs: int = 2, |
|
sync_cls_avg_factor: bool = False, |
|
use_nms: bool = False, |
|
neg_cls: bool = True, |
|
loss_cls: ConfigType = dict( |
|
type='CrossEntropyLoss', |
|
bg_cls_weight=0.1, |
|
use_sigmoid=False, |
|
loss_weight=1.0, |
|
class_weight=1.0), |
|
loss_bbox: ConfigType = dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou: ConfigType = dict(type='GIoULoss', loss_weight=2.0), |
|
train_cfg: ConfigType = dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
match_costs=[ |
|
dict(type='ClassificationCost', weight=1.), |
|
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
dict(type='IoUCost', iou_mode='giou', weight=2.0) |
|
])), |
|
test_cfg: ConfigType = dict(max_per_img=100), |
|
init_cfg: OptMultiConfig = None) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
self.bg_cls_weight = 0 |
|
self.sync_cls_avg_factor = sync_cls_avg_factor |
|
class_weight = loss_cls.get('class_weight', None) |
|
if class_weight is not None and (self.__class__ is DETRHead): |
|
assert isinstance(class_weight, float), 'Expected ' \ |
|
'class_weight to have type float. Found ' \ |
|
f'{type(class_weight)}.' |
|
|
|
|
|
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) |
|
assert isinstance(bg_cls_weight, float), 'Expected ' \ |
|
'bg_cls_weight to have type float. Found ' \ |
|
f'{type(bg_cls_weight)}.' |
|
class_weight = torch.ones(num_classes + 1) * class_weight |
|
|
|
class_weight[num_classes] = bg_cls_weight |
|
loss_cls.update({'class_weight': class_weight}) |
|
if 'bg_cls_weight' in loss_cls: |
|
loss_cls.pop('bg_cls_weight') |
|
self.bg_cls_weight = bg_cls_weight |
|
|
|
if train_cfg: |
|
assert 'assigner' in train_cfg, 'assigner should be provided ' \ |
|
'when train_cfg is set.' |
|
assigner = train_cfg['assigner'] |
|
self.assigner = TASK_UTILS.build(assigner) |
|
if train_cfg.get('sampler', None) is not None: |
|
raise RuntimeError('DETR do not build sampler.') |
|
self.num_classes = num_classes |
|
self.embed_dims = embed_dims |
|
self.num_reg_fcs = num_reg_fcs |
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
self.loss_cls = MODELS.build(loss_cls) |
|
self.loss_bbox = MODELS.build(loss_bbox) |
|
self.loss_iou = MODELS.build(loss_iou) |
|
self.use_nms = use_nms |
|
self.neg_cls = neg_cls |
|
if self.loss_cls.use_sigmoid: |
|
self.cls_out_channels = num_classes |
|
else: |
|
self.cls_out_channels = num_classes + 1 |
|
|
|
self._init_layers() |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the transformer head.""" |
|
|
|
self.fc_cls = Linear(self.embed_dims, self.cls_out_channels) |
|
|
|
self.activate = nn.ReLU() |
|
self.reg_ffn = FFN( |
|
self.embed_dims, |
|
self.embed_dims, |
|
self.num_reg_fcs, |
|
dict(type='ReLU', inplace=True), |
|
dropout=0.0, |
|
add_residual=False) |
|
|
|
|
|
|
|
self.fc_reg = Linear(self.embed_dims, 4) |
|
|
|
def forward(self, hidden_states: Tensor) -> Tuple[Tensor]: |
|
""""Forward function. |
|
|
|
Args: |
|
hidden_states (Tensor): Features from transformer decoder. If |
|
`return_intermediate_dec` in detr.py is True output has shape |
|
(num_decoder_layers, bs, num_queries, dim), else has shape |
|
(1, bs, num_queries, dim) which only contains the last layer |
|
outputs. |
|
Returns: |
|
tuple[Tensor]: results of head containing the following tensor. |
|
|
|
- layers_cls_scores (Tensor): Outputs from the classification head, |
|
shape (num_decoder_layers, bs, num_queries, cls_out_channels). |
|
Note cls_out_channels should include background. |
|
- layers_bbox_preds (Tensor): Sigmoid outputs from the regression |
|
head with normalized coordinate format (cx, cy, w, h), has shape |
|
(num_decoder_layers, bs, num_queries, 4). |
|
""" |
|
layers_cls_scores = self.fc_cls(hidden_states) |
|
layers_bbox_preds = self.fc_reg( |
|
self.activate(self.reg_ffn(hidden_states))).sigmoid() |
|
return layers_cls_scores, layers_bbox_preds |
|
|
|
def loss(self, hidden_states: Tensor, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the features of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Feature from the transformer decoder, has |
|
shape (num_decoder_layers, bs, num_queries, cls_out_channels) |
|
or (num_decoder_layers, num_queries, bs, cls_out_channels). |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
|
|
outs = self(hidden_states) |
|
loss_inputs = outs + (batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat(*loss_inputs) |
|
return losses |
|
|
|
def loss_by_feat( |
|
self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None |
|
) -> Dict[str, Tensor]: |
|
""""Loss function. |
|
|
|
Only outputs from the last feature level are used for computing |
|
losses by default. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification outputs |
|
of each decoder layers. Each is a 4D-tensor, has shape |
|
(num_decoder_layers, bs, num_queries, cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Sigmoid regression |
|
outputs of each decoder layers. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and shape |
|
(num_decoder_layers, bs, num_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert batch_gt_instances_ignore is None, \ |
|
f'{self.__class__.__name__} only supports ' \ |
|
'for batch_gt_instances_ignore setting to None.' |
|
|
|
losses_cls, losses_bbox, losses_iou = multi_apply( |
|
self.loss_by_feat_single, |
|
all_layers_cls_scores, |
|
all_layers_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
|
|
loss_dict = dict() |
|
|
|
loss_dict['loss_cls'] = losses_cls[-1] |
|
loss_dict['loss_bbox'] = losses_bbox[-1] |
|
loss_dict['loss_iou'] = losses_iou[-1] |
|
|
|
num_dec_layer = 0 |
|
for loss_cls_i, loss_bbox_i, loss_iou_i in \ |
|
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): |
|
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i |
|
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i |
|
num_dec_layer += 1 |
|
return loss_dict |
|
|
|
def loss_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict]) -> Tuple[Tensor]: |
|
"""Loss function for outputs from a single decoder layer of a single |
|
feature level. |
|
|
|
Args: |
|
cls_scores (Tensor): Box score logits from a single decoder layer |
|
for all images, has shape (bs, num_queries, cls_out_channels). |
|
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer |
|
for all images, with normalized coordinate (cx, cy, w, h) and |
|
shape (bs, num_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and |
|
`loss_iou`. |
|
""" |
|
num_imgs = cls_scores.size(0) |
|
cls_scores_list = [cls_scores[i] for i in range(num_imgs)] |
|
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] |
|
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list, |
|
batch_gt_instances, batch_img_metas) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
num_total_pos, num_total_neg) = cls_reg_targets |
|
labels = torch.cat(labels_list, 0) |
|
label_weights = torch.cat(label_weights_list, 0) |
|
bbox_targets = torch.cat(bbox_targets_list, 0) |
|
bbox_weights = torch.cat(bbox_weights_list, 0) |
|
|
|
|
|
cls_scores = cls_scores.reshape(-1, self.cls_out_channels) |
|
|
|
cls_avg_factor = num_total_pos * 1.0 + \ |
|
num_total_neg * self.bg_cls_weight |
|
|
|
if not self.neg_cls: |
|
cls_avg_factor = num_total_pos * 1.0 |
|
|
|
if self.sync_cls_avg_factor: |
|
cls_avg_factor = reduce_mean( |
|
cls_scores.new_tensor([cls_avg_factor])) |
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
|
|
loss_cls = self.loss_cls( |
|
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) |
|
|
|
|
|
|
|
num_total_pos = loss_cls.new_tensor([num_total_pos]) |
|
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() |
|
|
|
|
|
factors = [] |
|
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds): |
|
img_h, img_w, = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0).repeat( |
|
bbox_pred.size(0), 1) |
|
factors.append(factor) |
|
factors = torch.cat(factors, 0) |
|
|
|
|
|
|
|
|
|
bbox_preds = bbox_preds.reshape(-1, 4) |
|
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors |
|
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors |
|
|
|
|
|
loss_iou = self.loss_iou( |
|
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) |
|
return loss_cls, loss_bbox, loss_iou |
|
|
|
def get_targets(self, cls_scores_list: List[Tensor], |
|
bbox_preds_list: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict]) -> tuple: |
|
"""Compute regression and classification targets for a batch image. |
|
|
|
Outputs from a single decoder layer of a single feature level are used. |
|
|
|
Args: |
|
cls_scores_list (list[Tensor]): Box score logits from a single |
|
decoder layer for each image, has shape [num_queries, |
|
cls_out_channels]. |
|
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single |
|
decoder layer for each image, with normalized coordinate |
|
(cx, cy, w, h) and shape [num_queries, 4]. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
|
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
|
|
- labels_list (list[Tensor]): Labels for all images. |
|
- label_weights_list (list[Tensor]): Label weights for all images. |
|
- bbox_targets_list (list[Tensor]): BBox targets for all images. |
|
- bbox_weights_list (list[Tensor]): BBox weights for all images. |
|
- num_total_pos (int): Number of positive samples in all images. |
|
- num_total_neg (int): Number of negative samples in all images. |
|
""" |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
pos_inds_list, |
|
neg_inds_list) = multi_apply(self._get_targets_single, |
|
cls_scores_list, bbox_preds_list, |
|
batch_gt_instances, batch_img_metas) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
return (labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) |
|
|
|
def _get_targets_single(self, cls_score: Tensor, bbox_pred: Tensor, |
|
gt_instances: InstanceData, |
|
img_meta: dict) -> tuple: |
|
"""Compute regression and classification targets for one image. |
|
|
|
Outputs from a single decoder layer of a single feature level are used. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from a single decoder layer |
|
for one image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer |
|
for one image, with normalized coordinate (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for one image. |
|
|
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
img_h, img_w = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0) |
|
num_bboxes = bbox_pred.size(0) |
|
|
|
bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred) |
|
bbox_pred = bbox_pred * factor |
|
|
|
pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred) |
|
|
|
assign_result = self.assigner.assign( |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances, |
|
img_meta=img_meta) |
|
|
|
|
|
|
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
pos_inds = torch.nonzero( |
|
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() |
|
neg_inds = torch.nonzero( |
|
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() |
|
pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 |
|
pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :] |
|
|
|
|
|
labels = gt_bboxes.new_full((num_bboxes, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[pos_inds] = gt_labels[pos_assigned_gt_inds] |
|
label_weights = gt_bboxes.new_ones(num_bboxes) |
|
|
|
if not self.neg_cls: |
|
print('1') |
|
label_weights[:] = 0 |
|
label_weights[pos_inds]=1 |
|
|
|
|
|
|
|
bbox_targets = torch.zeros_like(bbox_pred) |
|
bbox_weights = torch.zeros_like(bbox_pred) |
|
bbox_weights[pos_inds] = 1.0 |
|
|
|
|
|
|
|
|
|
pos_gt_bboxes_normalized = pos_gt_bboxes / factor |
|
pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized) |
|
bbox_targets[pos_inds] = pos_gt_bboxes_targets |
|
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, |
|
neg_inds) |
|
|
|
def loss_and_predict( |
|
self, hidden_states: Tuple[Tensor], |
|
batch_data_samples: SampleList) -> Tuple[dict, InstanceList]: |
|
"""Perform forward propagation of the head, then calculate loss and |
|
predictions from the features and data samples. Over-write because |
|
img_metas are needed as inputs for bbox_head. |
|
|
|
Args: |
|
hidden_states (tuple[Tensor]): Feature from the transformer |
|
decoder, has shape (num_decoder_layers, bs, num_queries, dim). |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
|
|
Returns: |
|
tuple: the return value is a tuple contains: |
|
|
|
- losses: (dict[str, Tensor]): A dictionary of loss components. |
|
- predictions (list[:obj:`InstanceData`]): Detection |
|
results of each image after the post process. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
|
|
outs = self(hidden_states) |
|
loss_inputs = outs + (batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat(*loss_inputs) |
|
|
|
predictions = self.predict_by_feat( |
|
*outs, batch_img_metas=batch_img_metas) |
|
return losses, predictions |
|
|
|
def predict(self, |
|
hidden_states: Tuple[Tensor], |
|
batch_data_samples: SampleList, |
|
rescale: bool = True) -> InstanceList: |
|
"""Perform forward propagation of the detection head and predict |
|
detection results on the features of the upstream network. Over-write |
|
because img_metas are needed as inputs for bbox_head. |
|
|
|
Args: |
|
hidden_states (tuple[Tensor]): Multi-level features from the |
|
upstream network, each is a 4D-tensor. |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool, optional): Whether to rescale the results. |
|
Defaults to True. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
|
|
last_layer_hidden_state = hidden_states[-1].unsqueeze(0) |
|
outs = self(last_layer_hidden_state) |
|
|
|
predictions = self.predict_by_feat( |
|
*outs, batch_img_metas=batch_img_metas, rescale=rescale) |
|
|
|
return predictions |
|
|
|
def predict_by_feat(self, |
|
layer_cls_scores: Tensor, |
|
layer_bbox_preds: Tensor, |
|
batch_img_metas: List[dict], |
|
rescale: bool = True) -> InstanceList: |
|
"""Transform network outputs for a batch into bbox predictions. |
|
|
|
Args: |
|
layer_cls_scores (Tensor): Classification outputs of the last or |
|
all decoder layer. Each is a 4D-tensor, has shape |
|
(num_decoder_layers, bs, num_queries, cls_out_channels). |
|
layer_bbox_preds (Tensor): Sigmoid regression outputs of the last |
|
or all decoder layer. Each is a 4D-tensor with normalized |
|
coordinate format (cx, cy, w, h) and shape |
|
(num_decoder_layers, bs, num_queries, 4). |
|
batch_img_metas (list[dict]): Meta information of each image. |
|
rescale (bool, optional): If `True`, return boxes in original |
|
image space. Defaults to `True`. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Object detection results of each image |
|
after the post process. Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
|
|
|
|
cls_scores = layer_cls_scores[-1] |
|
bbox_preds = layer_bbox_preds[-1] |
|
|
|
result_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score = cls_scores[img_id] |
|
bbox_pred = bbox_preds[img_id] |
|
img_meta = batch_img_metas[img_id] |
|
results = self._predict_by_feat_single(cls_score, bbox_pred, |
|
img_meta, rescale) |
|
result_list.append(results) |
|
return result_list |
|
|
|
def _predict_by_feat_single(self, |
|
cls_score: Tensor, |
|
bbox_pred: Tensor, |
|
img_meta: dict, |
|
rescale: bool = True) -> InstanceData: |
|
"""Transform outputs from the last decoder layer into bbox predictions |
|
for each image. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from the last decoder layer |
|
for each image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer |
|
for each image, with coordinate format (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
img_meta (dict): Image meta info. |
|
rescale (bool): If True, return boxes in original image |
|
space. Default True. |
|
|
|
Returns: |
|
:obj:`InstanceData`: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
assert len(cls_score) == len(bbox_pred) |
|
max_per_img = self.test_cfg.get('max_per_img', len(cls_score)) |
|
img_shape = img_meta['img_shape'] |
|
|
|
if self.loss_cls.use_sigmoid: |
|
cls_score = cls_score.sigmoid() |
|
scores, indexes = cls_score.view(-1).topk(max_per_img) |
|
det_labels = indexes % self.num_classes |
|
bbox_index = indexes // self.num_classes |
|
bbox_pred = bbox_pred[bbox_index] |
|
else: |
|
scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1) |
|
scores, bbox_index = scores.topk(max_per_img) |
|
bbox_pred = bbox_pred[bbox_index] |
|
det_labels = det_labels[bbox_index] |
|
|
|
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) |
|
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] |
|
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] |
|
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) |
|
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) |
|
|
|
if self.use_nms: |
|
iou_threshold= 0.01 |
|
offset = 0 |
|
score_threshold = 0.0 |
|
max_num = 300 |
|
dets, inds = nms(det_bboxes, scores, iou_threshold, offset, score_threshold, max_num) |
|
det_bboxes = dets[:,:-1] |
|
scores = dets[:,-1] |
|
det_labels =det_labels[inds] |
|
|
|
if rescale: |
|
|
|
|
|
|
|
|
|
if img_meta.get('scale_factor') is not None: |
|
det_bboxes /= det_bboxes.new_tensor( |
|
img_meta['scale_factor']).repeat((1, 2)) |
|
results = InstanceData() |
|
results.bboxes = det_bboxes |
|
results.scores = scores |
|
results.labels = det_labels |
|
return results |
|
|