|
|
|
from typing import List, Optional, Sequence, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, Scale |
|
from mmengine.model import bias_init_with_prob, normal_init |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures.bbox import bbox_overlaps |
|
from mmdet.utils import (ConfigType, InstanceList, OptConfigType, |
|
OptInstanceList, reduce_mean) |
|
from ..task_modules.prior_generators import anchor_inside_flags |
|
from ..utils import images_to_levels, multi_apply, unmap |
|
from .anchor_head import AnchorHead |
|
|
|
EPS = 1e-12 |
|
|
|
|
|
@MODELS.register_module() |
|
class DDODHead(AnchorHead): |
|
"""Detection Head of `DDOD <https://arxiv.org/abs/2107.02963>`_. |
|
|
|
DDOD head decomposes conjunctions lying in most current one-stage |
|
detectors via label assignment disentanglement, spatial feature |
|
disentanglement, and pyramid supervision disentanglement. |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the |
|
background category. |
|
in_channels (int): Number of channels in the input feature map. |
|
stacked_convs (int): The number of stacked Conv. Defaults to 4. |
|
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for |
|
convolution layer. Defaults to None. |
|
use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True. |
|
norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head. |
|
Defaults to dict(type='GN', num_groups=32, requires_grad=True). |
|
loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to |
|
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0). |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
in_channels: int, |
|
stacked_convs: int = 4, |
|
conv_cfg: OptConfigType = None, |
|
use_dcn: bool = True, |
|
norm_cfg: ConfigType = dict( |
|
type='GN', num_groups=32, requires_grad=True), |
|
loss_iou: ConfigType = dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=True, |
|
loss_weight=1.0), |
|
**kwargs) -> None: |
|
self.stacked_convs = stacked_convs |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.use_dcn = use_dcn |
|
super().__init__(num_classes, in_channels, **kwargs) |
|
|
|
if self.train_cfg: |
|
self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner']) |
|
self.reg_assigner = TASK_UTILS.build( |
|
self.train_cfg['reg_assigner']) |
|
self.loss_iou = MODELS.build(loss_iou) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
self.relu = nn.ReLU(inplace=True) |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
self.cls_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=dict(type='DCN', deform_groups=1) |
|
if i == 0 and self.use_dcn else self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.reg_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=dict(type='DCN', deform_groups=1) |
|
if i == 0 and self.use_dcn else self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.atss_cls = nn.Conv2d( |
|
self.feat_channels, |
|
self.num_base_priors * self.cls_out_channels, |
|
3, |
|
padding=1) |
|
self.atss_reg = nn.Conv2d( |
|
self.feat_channels, self.num_base_priors * 4, 3, padding=1) |
|
self.atss_iou = nn.Conv2d( |
|
self.feat_channels, self.num_base_priors * 1, 3, padding=1) |
|
self.scales = nn.ModuleList( |
|
[Scale(1.0) for _ in self.prior_generator.strides]) |
|
|
|
|
|
self.cls_num_pos_samples_per_level = [ |
|
0. for _ in range(len(self.prior_generator.strides)) |
|
] |
|
self.reg_num_pos_samples_per_level = [ |
|
0. for _ in range(len(self.prior_generator.strides)) |
|
] |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the head.""" |
|
for m in self.cls_convs: |
|
normal_init(m.conv, std=0.01) |
|
for m in self.reg_convs: |
|
normal_init(m.conv, std=0.01) |
|
normal_init(self.atss_reg, std=0.01) |
|
normal_init(self.atss_iou, std=0.01) |
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.atss_cls, std=0.01, bias=bias_cls) |
|
|
|
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: A tuple of classification scores, bbox predictions, |
|
and iou predictions. |
|
|
|
- cls_scores (list[Tensor]): Classification scores for all \ |
|
scale levels, each is a 4D-tensor, the channels number is \ |
|
num_base_priors * num_classes. |
|
- bbox_preds (list[Tensor]): Box energies / deltas for all \ |
|
scale levels, each is a 4D-tensor, the channels number is \ |
|
num_base_priors * 4. |
|
- iou_preds (list[Tensor]): IoU scores for all scale levels, \ |
|
each is a 4D-tensor, the channels number is num_base_priors * 1. |
|
""" |
|
return multi_apply(self.forward_single, x, self.scales) |
|
|
|
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: |
|
"""Forward feature of a single scale level. |
|
|
|
Args: |
|
x (Tensor): Features of a single scale level. |
|
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize |
|
the bbox prediction. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- cls_score (Tensor): Cls scores for a single scale level \ |
|
the channels number is num_base_priors * num_classes. |
|
- bbox_pred (Tensor): Box energies / deltas for a single \ |
|
scale level, the channels number is num_base_priors * 4. |
|
- iou_pred (Tensor): Iou for a single scale level, the \ |
|
channel number is (N, num_base_priors * 1, H, W). |
|
""" |
|
cls_feat = x |
|
reg_feat = x |
|
for cls_conv in self.cls_convs: |
|
cls_feat = cls_conv(cls_feat) |
|
for reg_conv in self.reg_convs: |
|
reg_feat = reg_conv(reg_feat) |
|
cls_score = self.atss_cls(cls_feat) |
|
|
|
bbox_pred = scale(self.atss_reg(reg_feat)).float() |
|
iou_pred = self.atss_iou(reg_feat) |
|
return cls_score, bbox_pred, iou_pred |
|
|
|
def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor, |
|
label_weights: Tensor, |
|
reweight_factor: List[float], |
|
avg_factor: float) -> Tuple[Tensor]: |
|
"""Compute cls loss of a single scale level. |
|
|
|
Args: |
|
cls_score (Tensor): Box scores for each scale level |
|
Has shape (N, num_base_priors * num_classes, H, W). |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors) |
|
reweight_factor (List[float]): Reweight factor for cls and reg |
|
loss. |
|
avg_factor (float): Average factor that is used to average |
|
the loss. When using sampling method, avg_factor is usually |
|
the sum of positive and negative priors. When using |
|
`PseudoSampler`, `avg_factor` is usually equal to the number |
|
of positive priors. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple of loss components. |
|
""" |
|
cls_score = cls_score.permute(0, 2, 3, 1).reshape( |
|
-1, self.cls_out_channels).contiguous() |
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
loss_cls = self.loss_cls( |
|
cls_score, labels, label_weights, avg_factor=avg_factor) |
|
return reweight_factor * loss_cls, |
|
|
|
def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor, |
|
iou_pred: Tensor, labels, |
|
label_weights: Tensor, bbox_targets: Tensor, |
|
bbox_weights: Tensor, |
|
reweight_factor: List[float], |
|
avg_factor: float) -> Tuple[Tensor, Tensor]: |
|
"""Compute reg loss of a single scale level based on the features |
|
extracted by the detection head. |
|
|
|
Args: |
|
anchors (Tensor): Box reference for each scale level with shape |
|
(N, num_total_anchors, 4). |
|
bbox_pred (Tensor): Box energies / deltas for each scale |
|
level with shape (N, num_base_priors * 4, H, W). |
|
iou_pred (Tensor): Iou for a single scale level, the |
|
channel number is (N, num_base_priors * 1, H, W). |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors) |
|
bbox_targets (Tensor): BBox regression targets of each anchor |
|
weight shape (N, num_total_anchors, 4). |
|
bbox_weights (Tensor): BBox weights of all anchors in the |
|
image with shape (N, 4) |
|
reweight_factor (List[float]): Reweight factor for cls and reg |
|
loss. |
|
avg_factor (float): Average factor that is used to average |
|
the loss. When using sampling method, avg_factor is usually |
|
the sum of positive and negative priors. When using |
|
`PseudoSampler`, `avg_factor` is usually equal to the number |
|
of positive priors. |
|
Returns: |
|
Tuple[Tensor, Tensor]: A tuple of loss components. |
|
""" |
|
anchors = anchors.reshape(-1, 4) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) |
|
iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, ) |
|
bbox_targets = bbox_targets.reshape(-1, 4) |
|
bbox_weights = bbox_weights.reshape(-1, 4) |
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
|
|
iou_targets = label_weights.new_zeros(labels.shape) |
|
iou_weights = label_weights.new_zeros(labels.shape) |
|
iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero( |
|
as_tuple=False)] = 1. |
|
|
|
|
|
bg_class_ind = self.num_classes |
|
pos_inds = ((labels >= 0) |
|
& |
|
(labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1) |
|
|
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = bbox_targets[pos_inds] |
|
pos_bbox_pred = bbox_pred[pos_inds] |
|
pos_anchors = anchors[pos_inds] |
|
|
|
pos_decode_bbox_pred = self.bbox_coder.decode( |
|
pos_anchors, pos_bbox_pred) |
|
pos_decode_bbox_targets = self.bbox_coder.decode( |
|
pos_anchors, pos_bbox_targets) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
pos_decode_bbox_pred, |
|
pos_decode_bbox_targets, |
|
avg_factor=avg_factor) |
|
|
|
iou_targets[pos_inds] = bbox_overlaps( |
|
pos_decode_bbox_pred.detach(), |
|
pos_decode_bbox_targets, |
|
is_aligned=True) |
|
loss_iou = self.loss_iou( |
|
iou_pred, iou_targets, iou_weights, avg_factor=avg_factor) |
|
else: |
|
loss_bbox = bbox_pred.sum() * 0 |
|
loss_iou = iou_pred.sum() * 0 |
|
|
|
return reweight_factor * loss_bbox, reweight_factor * loss_iou |
|
|
|
def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]: |
|
"""Compute reweight_factor for regression and classification loss.""" |
|
|
|
bg_class_ind = self.num_classes |
|
for ii, each_level_label in enumerate(labels_list): |
|
pos_inds = ((each_level_label >= 0) & |
|
(each_level_label < bg_class_ind)).nonzero( |
|
as_tuple=False).squeeze(1) |
|
self.cls_num_pos_samples_per_level[ii] += len(pos_inds) |
|
|
|
min_pos_samples = min(self.cls_num_pos_samples_per_level) |
|
max_pos_samples = max(self.cls_num_pos_samples_per_level) |
|
interval = 1. / (max_pos_samples - min_pos_samples + 1e-10) |
|
reweight_factor_per_level = [] |
|
for pos_samples in self.cls_num_pos_samples_per_level: |
|
factor = 2. - (pos_samples - min_pos_samples) * interval |
|
reweight_factor_per_level.append(factor) |
|
return reweight_factor_per_level |
|
|
|
def loss_by_feat( |
|
self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
iou_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> dict: |
|
"""Calculate the loss based on the features extracted by the detection |
|
head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
Has shape (N, num_base_priors * num_classes, H, W) |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_base_priors * 4, H, W) |
|
iou_preds (list[Tensor]): Score factor for all scale level, |
|
each is a 4D-tensor, has shape (batch_size, 1, H, W). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.prior_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
|
|
targets_com = self.process_predictions_and_anchors( |
|
anchor_list, valid_flag_list, cls_scores, bbox_preds, |
|
batch_img_metas, batch_gt_instances_ignore) |
|
(anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, |
|
bbox_pred_list, batch_gt_instances_ignore) = targets_com |
|
|
|
|
|
cls_targets = self.get_cls_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
num_level_anchors_list, |
|
cls_score_list, |
|
bbox_pred_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
|
|
(cls_anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, avg_factor) = cls_targets |
|
|
|
avg_factor = reduce_mean( |
|
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() |
|
avg_factor = max(avg_factor, 1.0) |
|
|
|
reweight_factor_per_level = self.calc_reweight_factor(labels_list) |
|
|
|
cls_losses_cls, = multi_apply( |
|
self.loss_cls_by_feat_single, |
|
cls_scores, |
|
labels_list, |
|
label_weights_list, |
|
reweight_factor_per_level, |
|
avg_factor=avg_factor) |
|
|
|
|
|
reg_targets = self.get_reg_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
num_level_anchors_list, |
|
cls_score_list, |
|
bbox_pred_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
|
|
(reg_anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, avg_factor) = reg_targets |
|
|
|
avg_factor = reduce_mean( |
|
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() |
|
avg_factor = max(avg_factor, 1.0) |
|
|
|
reweight_factor_per_level = self.calc_reweight_factor(labels_list) |
|
|
|
reg_losses_bbox, reg_losses_iou = multi_apply( |
|
self.loss_reg_by_feat_single, |
|
reg_anchor_list, |
|
bbox_preds, |
|
iou_preds, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
bbox_weights_list, |
|
reweight_factor_per_level, |
|
avg_factor=avg_factor) |
|
|
|
return dict( |
|
loss_cls=cls_losses_cls, |
|
loss_bbox=reg_losses_bbox, |
|
loss_iou=reg_losses_iou) |
|
|
|
def process_predictions_and_anchors( |
|
self, |
|
anchor_list: List[List[Tensor]], |
|
valid_flag_list: List[List[Tensor]], |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> tuple: |
|
"""Compute common vars for regression and classification targets. |
|
|
|
Args: |
|
anchor_list (List[List[Tensor]]): anchors of each image. |
|
valid_flag_list (List[List[Tensor]]): Valid flags of each image. |
|
cls_scores (List[Tensor]): Classification scores for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * num_classes. |
|
bbox_preds (list[Tensor]): Box energies / deltas for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * 4. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Return: |
|
tuple[Tensor]: A tuple of common loss vars. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
assert len(anchor_list) == len(valid_flag_list) == num_imgs |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
num_level_anchors_list = [num_level_anchors] * num_imgs |
|
|
|
anchor_list_ = [] |
|
valid_flag_list_ = [] |
|
|
|
for i in range(num_imgs): |
|
assert len(anchor_list[i]) == len(valid_flag_list[i]) |
|
anchor_list_.append(torch.cat(anchor_list[i])) |
|
valid_flag_list_.append(torch.cat(valid_flag_list[i])) |
|
|
|
|
|
if batch_gt_instances_ignore is None: |
|
batch_gt_instances_ignore = [None for _ in range(num_imgs)] |
|
|
|
num_levels = len(cls_scores) |
|
cls_score_list = [] |
|
bbox_pred_list = [] |
|
|
|
mlvl_cls_score_list = [ |
|
cls_score.permute(0, 2, 3, 1).reshape( |
|
num_imgs, -1, self.num_base_priors * self.cls_out_channels) |
|
for cls_score in cls_scores |
|
] |
|
mlvl_bbox_pred_list = [ |
|
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, |
|
self.num_base_priors * 4) |
|
for bbox_pred in bbox_preds |
|
] |
|
|
|
for i in range(num_imgs): |
|
mlvl_cls_tensor_list = [ |
|
mlvl_cls_score_list[j][i] for j in range(num_levels) |
|
] |
|
mlvl_bbox_tensor_list = [ |
|
mlvl_bbox_pred_list[j][i] for j in range(num_levels) |
|
] |
|
cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0) |
|
cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0) |
|
cls_score_list.append(cat_mlvl_cls_score) |
|
bbox_pred_list.append(cat_mlvl_bbox_pred) |
|
return (anchor_list_, valid_flag_list_, num_level_anchors_list, |
|
cls_score_list, bbox_pred_list, batch_gt_instances_ignore) |
|
|
|
def get_cls_targets(self, |
|
anchor_list: List[Tensor], |
|
valid_flag_list: List[Tensor], |
|
num_level_anchors_list: List[int], |
|
cls_score_list: List[Tensor], |
|
bbox_pred_list: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
unmap_outputs: bool = True) -> tuple: |
|
"""Get cls targets for DDOD head. |
|
|
|
This method is almost the same as `AnchorHead.get_targets()`. |
|
Besides returning the targets as the parent method does, |
|
it also returns the anchors as the first element of the |
|
returned tuple. |
|
|
|
Args: |
|
anchor_list (list[Tensor]): anchors of each image. |
|
valid_flag_list (list[Tensor]): Valid flags of each image. |
|
num_level_anchors_list (list[Tensor]): Number of anchors of each |
|
scale level of all image. |
|
cls_score_list (list[Tensor]): Classification scores for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * num_classes. |
|
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * 4. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. |
|
|
|
Return: |
|
tuple[Tensor]: A tuple of cls targets components. |
|
""" |
|
(all_anchors, all_labels, all_label_weights, all_bbox_targets, |
|
all_bbox_weights, pos_inds_list, neg_inds_list, |
|
sampling_results_list) = multi_apply( |
|
self._get_targets_single, |
|
anchor_list, |
|
valid_flag_list, |
|
cls_score_list, |
|
bbox_pred_list, |
|
num_level_anchors_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore, |
|
unmap_outputs=unmap_outputs, |
|
is_cls_assigner=True) |
|
|
|
|
|
|
|
|
|
avg_factor = sum( |
|
[results.avg_factor for results in sampling_results_list]) |
|
|
|
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) |
|
labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors_list[0]) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors_list[0]) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_anchors_list[0]) |
|
return (anchors_list, labels_list, label_weights_list, |
|
bbox_targets_list, bbox_weights_list, avg_factor) |
|
|
|
def get_reg_targets(self, |
|
anchor_list: List[Tensor], |
|
valid_flag_list: List[Tensor], |
|
num_level_anchors_list: List[int], |
|
cls_score_list: List[Tensor], |
|
bbox_pred_list: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
unmap_outputs: bool = True) -> tuple: |
|
"""Get reg targets for DDOD head. |
|
|
|
This method is almost the same as `AnchorHead.get_targets()` when |
|
is_cls_assigner is False. Besides returning the targets as the parent |
|
method does, it also returns the anchors as the first element of the |
|
returned tuple. |
|
|
|
Args: |
|
anchor_list (list[Tensor]): anchors of each image. |
|
valid_flag_list (list[Tensor]): Valid flags of each image. |
|
num_level_anchors_list (list[Tensor]): Number of anchors of each |
|
scale level of all image. |
|
cls_score_list (list[Tensor]): Classification scores for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * num_classes. |
|
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale |
|
levels, each is a 4D-tensor, the channels number is |
|
num_base_priors * 4. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. |
|
|
|
Return: |
|
tuple[Tensor]: A tuple of reg targets components. |
|
""" |
|
(all_anchors, all_labels, all_label_weights, all_bbox_targets, |
|
all_bbox_weights, pos_inds_list, neg_inds_list, |
|
sampling_results_list) = multi_apply( |
|
self._get_targets_single, |
|
anchor_list, |
|
valid_flag_list, |
|
cls_score_list, |
|
bbox_pred_list, |
|
num_level_anchors_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore, |
|
unmap_outputs=unmap_outputs, |
|
is_cls_assigner=False) |
|
|
|
|
|
|
|
|
|
avg_factor = sum( |
|
[results.avg_factor for results in sampling_results_list]) |
|
|
|
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) |
|
labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors_list[0]) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors_list[0]) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_anchors_list[0]) |
|
return (anchors_list, labels_list, label_weights_list, |
|
bbox_targets_list, bbox_weights_list, avg_factor) |
|
|
|
def _get_targets_single(self, |
|
flat_anchors: Tensor, |
|
valid_flags: Tensor, |
|
cls_scores: Tensor, |
|
bbox_preds: Tensor, |
|
num_level_anchors: List[int], |
|
gt_instances: InstanceData, |
|
img_meta: dict, |
|
gt_instances_ignore: Optional[InstanceData] = None, |
|
unmap_outputs: bool = True, |
|
is_cls_assigner: bool = True) -> tuple: |
|
"""Compute regression, classification targets for anchors in a single |
|
image. |
|
|
|
Args: |
|
flat_anchors (Tensor): Multi-level anchors of the image, |
|
which are concatenated into a single tensor of shape |
|
(num_base_priors, 4). |
|
valid_flags (Tensor): Multi level valid flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_base_priors,). |
|
cls_scores (Tensor): Classification scores for all scale |
|
levels of the image. |
|
bbox_preds (Tensor): Box energies / deltas for all scale |
|
levels of the image. |
|
num_level_anchors (List[int]): Number of anchors of each |
|
scale level. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for current image. |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. Defaults to True. |
|
is_cls_assigner (bool): Classification or regression. |
|
Defaults to True. |
|
|
|
Returns: |
|
tuple: N is the number of total anchors in the image. |
|
- anchors (Tensor): all anchors in the image with shape (N, 4). |
|
- labels (Tensor): Labels of all anchors in the image with \ |
|
shape (N, ). |
|
- label_weights (Tensor): Label weights of all anchor in the \ |
|
image with shape (N, ). |
|
- bbox_targets (Tensor): BBox targets of all anchors in the \ |
|
image with shape (N, 4). |
|
- bbox_weights (Tensor): BBox weights of all anchors in the \ |
|
image with shape (N, 4) |
|
- pos_inds (Tensor): Indices of positive anchor with shape \ |
|
(num_pos, ). |
|
- neg_inds (Tensor): Indices of negative anchor with shape \ |
|
(num_neg, ). |
|
- sampling_result (:obj:`SamplingResult`): Sampling results. |
|
""" |
|
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, |
|
img_meta['img_shape'][:2], |
|
self.train_cfg['allowed_border']) |
|
if not inside_flags.any(): |
|
raise ValueError( |
|
'There is no valid anchor inside the image boundary. Please ' |
|
'check the image size and anchor sizes, or set ' |
|
'``allowed_border`` to -1 to skip the condition.') |
|
|
|
anchors = flat_anchors[inside_flags, :] |
|
|
|
num_level_anchors_inside = self.get_num_level_anchors_inside( |
|
num_level_anchors, inside_flags) |
|
bbox_preds_valid = bbox_preds[inside_flags, :] |
|
cls_scores_valid = cls_scores[inside_flags, :] |
|
|
|
assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner |
|
|
|
|
|
bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid) |
|
pred_instances = InstanceData( |
|
priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid) |
|
|
|
assign_result = assigner.assign( |
|
pred_instances=pred_instances, |
|
num_level_priors=num_level_anchors_inside, |
|
gt_instances=gt_instances, |
|
gt_instances_ignore=gt_instances_ignore) |
|
sampling_result = self.sampler.sample( |
|
assign_result=assign_result, |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances) |
|
|
|
num_valid_anchors = anchors.shape[0] |
|
bbox_targets = torch.zeros_like(anchors) |
|
bbox_weights = torch.zeros_like(anchors) |
|
labels = anchors.new_full((num_valid_anchors, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = self.bbox_coder.encode( |
|
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) |
|
bbox_targets[pos_inds, :] = pos_bbox_targets |
|
bbox_weights[pos_inds, :] = 1.0 |
|
|
|
labels[pos_inds] = sampling_result.pos_gt_labels |
|
if self.train_cfg['pos_weight'] <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg['pos_weight'] |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_anchors.size(0) |
|
anchors = unmap(anchors, num_total_anchors, inside_flags) |
|
labels = unmap( |
|
labels, num_total_anchors, inside_flags, fill=self.num_classes) |
|
label_weights = unmap(label_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) |
|
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) |
|
|
|
return (anchors, labels, label_weights, bbox_targets, bbox_weights, |
|
pos_inds, neg_inds, sampling_result) |
|
|
|
def get_num_level_anchors_inside(self, num_level_anchors: List[int], |
|
inside_flags: Tensor) -> List[int]: |
|
"""Get the anchors of each scale level inside. |
|
|
|
Args: |
|
num_level_anchors (list[int]): Number of anchors of each |
|
scale level. |
|
inside_flags (Tensor): Multi level inside flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_base_priors,). |
|
|
|
Returns: |
|
list[int]: Number of anchors of each scale level inside. |
|
""" |
|
split_inside_flags = torch.split(inside_flags, num_level_anchors) |
|
num_level_anchors_inside = [ |
|
int(flags.sum()) for flags in split_inside_flags |
|
] |
|
return num_level_anchors_inside |
|
|