|
|
|
from typing import List, Sequence |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule |
|
from mmengine.model import BaseModule |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.utils import ConfigType, OptMultiConfig |
|
from ..layers import ResLayer |
|
from .resnet import BasicBlock |
|
|
|
|
|
class HourglassModule(BaseModule): |
|
"""Hourglass Module for HourglassNet backbone. |
|
|
|
Generate module recursively and use BasicBlock as the base unit. |
|
|
|
Args: |
|
depth (int): Depth of current HourglassModule. |
|
stage_channels (list[int]): Feature channels of sub-modules in current |
|
and follow-up HourglassModule. |
|
stage_blocks (list[int]): Number of sub-modules stacked in current and |
|
follow-up HourglassModule. |
|
norm_cfg (ConfigType): Dictionary to construct and config norm layer. |
|
Defaults to `dict(type='BN', requires_grad=True)` |
|
upsample_cfg (ConfigType): Config dict for interpolate layer. |
|
Defaults to `dict(mode='nearest')` |
|
init_cfg (dict or ConfigDict, optional): the config to control the |
|
initialization. |
|
""" |
|
|
|
def __init__(self, |
|
depth: int, |
|
stage_channels: List[int], |
|
stage_blocks: List[int], |
|
norm_cfg: ConfigType = dict(type='BN', requires_grad=True), |
|
upsample_cfg: ConfigType = dict(mode='nearest'), |
|
init_cfg: OptMultiConfig = None) -> None: |
|
super().__init__(init_cfg) |
|
|
|
self.depth = depth |
|
|
|
cur_block = stage_blocks[0] |
|
next_block = stage_blocks[1] |
|
|
|
cur_channel = stage_channels[0] |
|
next_channel = stage_channels[1] |
|
|
|
self.up1 = ResLayer( |
|
BasicBlock, cur_channel, cur_channel, cur_block, norm_cfg=norm_cfg) |
|
|
|
self.low1 = ResLayer( |
|
BasicBlock, |
|
cur_channel, |
|
next_channel, |
|
cur_block, |
|
stride=2, |
|
norm_cfg=norm_cfg) |
|
|
|
if self.depth > 1: |
|
self.low2 = HourglassModule(depth - 1, stage_channels[1:], |
|
stage_blocks[1:]) |
|
else: |
|
self.low2 = ResLayer( |
|
BasicBlock, |
|
next_channel, |
|
next_channel, |
|
next_block, |
|
norm_cfg=norm_cfg) |
|
|
|
self.low3 = ResLayer( |
|
BasicBlock, |
|
next_channel, |
|
cur_channel, |
|
cur_block, |
|
norm_cfg=norm_cfg, |
|
downsample_first=False) |
|
|
|
self.up2 = F.interpolate |
|
self.upsample_cfg = upsample_cfg |
|
|
|
def forward(self, x: torch.Tensor) -> nn.Module: |
|
"""Forward function.""" |
|
up1 = self.up1(x) |
|
low1 = self.low1(x) |
|
low2 = self.low2(low1) |
|
low3 = self.low3(low2) |
|
|
|
|
|
if 'scale_factor' in self.upsample_cfg: |
|
up2 = self.up2(low3, **self.upsample_cfg) |
|
else: |
|
shape = up1.shape[2:] |
|
up2 = self.up2(low3, size=shape, **self.upsample_cfg) |
|
return up1 + up2 |
|
|
|
|
|
@MODELS.register_module() |
|
class HourglassNet(BaseModule): |
|
"""HourglassNet backbone. |
|
|
|
Stacked Hourglass Networks for Human Pose Estimation. |
|
More details can be found in the `paper |
|
<https://arxiv.org/abs/1603.06937>`_ . |
|
|
|
Args: |
|
downsample_times (int): Downsample times in a HourglassModule. |
|
num_stacks (int): Number of HourglassModule modules stacked, |
|
1 for Hourglass-52, 2 for Hourglass-104. |
|
stage_channels (Sequence[int]): Feature channel of each sub-module in a |
|
HourglassModule. |
|
stage_blocks (Sequence[int]): Number of sub-modules stacked in a |
|
HourglassModule. |
|
feat_channel (int): Feature channel of conv after a HourglassModule. |
|
norm_cfg (norm_cfg): Dictionary to construct and config norm layer. |
|
init_cfg (dict or ConfigDict, optional): the config to control the |
|
initialization. |
|
|
|
Example: |
|
>>> from mmdet.models import HourglassNet |
|
>>> import torch |
|
>>> self = HourglassNet() |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 511, 511) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_output in level_outputs: |
|
... print(tuple(level_output.shape)) |
|
(1, 256, 128, 128) |
|
(1, 256, 128, 128) |
|
""" |
|
|
|
def __init__(self, |
|
in_channels:int = 3, |
|
downsample_times: int = 5, |
|
num_stacks: int = 2, |
|
stage_channels: Sequence = (256, 256, 384, 384, 384, 512), |
|
stage_blocks: Sequence = (2, 2, 2, 2, 2, 4), |
|
feat_channel: int = 256, |
|
norm_cfg: ConfigType = dict(type='BN', requires_grad=True), |
|
init_cfg: OptMultiConfig = None) -> None: |
|
assert init_cfg is None, 'To prevent abnormal initialization ' \ |
|
'behavior, init_cfg is not allowed to be set' |
|
super().__init__(init_cfg) |
|
|
|
self.num_stacks = num_stacks |
|
assert self.num_stacks >= 1 |
|
assert len(stage_channels) == len(stage_blocks) |
|
assert len(stage_channels) > downsample_times |
|
|
|
cur_channel = stage_channels[0] |
|
|
|
self.stem = nn.Sequential( |
|
ConvModule( |
|
in_channels, cur_channel // 2, 7, padding=3, stride=2, |
|
norm_cfg=norm_cfg), |
|
ResLayer( |
|
BasicBlock, |
|
cur_channel // 2, |
|
cur_channel, |
|
1, |
|
stride=2, |
|
norm_cfg=norm_cfg)) |
|
|
|
self.hourglass_modules = nn.ModuleList([ |
|
HourglassModule(downsample_times, stage_channels, stage_blocks) |
|
for _ in range(num_stacks) |
|
]) |
|
|
|
self.inters = ResLayer( |
|
BasicBlock, |
|
cur_channel, |
|
cur_channel, |
|
num_stacks - 1, |
|
norm_cfg=norm_cfg) |
|
|
|
self.conv1x1s = nn.ModuleList([ |
|
ConvModule( |
|
cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) |
|
for _ in range(num_stacks - 1) |
|
]) |
|
|
|
self.out_convs = nn.ModuleList([ |
|
ConvModule( |
|
cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg) |
|
for _ in range(num_stacks) |
|
]) |
|
|
|
self.remap_convs = nn.ModuleList([ |
|
ConvModule( |
|
feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) |
|
for _ in range(num_stacks - 1) |
|
]) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def init_weights(self) -> None: |
|
"""Init module weights.""" |
|
|
|
super().init_weights() |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
m.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
"""Forward function.""" |
|
inter_feat = self.stem(x) |
|
out_feats = [] |
|
|
|
for ind in range(self.num_stacks): |
|
single_hourglass = self.hourglass_modules[ind] |
|
out_conv = self.out_convs[ind] |
|
|
|
hourglass_feat = single_hourglass(inter_feat) |
|
out_feat = out_conv(hourglass_feat) |
|
out_feats.append(out_feat) |
|
|
|
if ind < self.num_stacks - 1: |
|
inter_feat = self.conv1x1s[ind]( |
|
inter_feat) + self.remap_convs[ind]( |
|
out_feat) |
|
inter_feat = self.inters[ind](self.relu(inter_feat)) |
|
|
|
return out_feats |
|
|