|
|
|
from typing import Tuple |
|
|
|
import numpy as np |
|
from mmcv.transforms import BaseTransform |
|
|
|
from mmdet.registry import TRANSFORMS |
|
|
|
|
|
@TRANSFORMS.register_module() |
|
class InstaBoost(BaseTransform): |
|
r"""Data augmentation method in `InstaBoost: Boosting Instance |
|
Segmentation Via Probability Map Guided Copy-Pasting |
|
<https://arxiv.org/abs/1908.07801>`_. |
|
|
|
Refer to https://github.com/GothicAi/Instaboost for implementation details. |
|
|
|
|
|
Required Keys: |
|
|
|
- img (np.uint8) |
|
- instances |
|
|
|
Modified Keys: |
|
|
|
- img (np.uint8) |
|
- instances |
|
|
|
Args: |
|
action_candidate (tuple): Action candidates. "normal", "horizontal", \ |
|
"vertical", "skip" are supported. Defaults to ('normal', \ |
|
'horizontal', 'skip'). |
|
action_prob (tuple): Corresponding action probabilities. Should be \ |
|
the same length as action_candidate. Defaults to (1, 0, 0). |
|
scale (tuple): (min scale, max scale). Defaults to (0.8, 1.2). |
|
dx (int): The maximum x-axis shift will be (instance width) / dx. |
|
Defaults to 15. |
|
dy (int): The maximum y-axis shift will be (instance height) / dy. |
|
Defaults to 15. |
|
theta (tuple): (min rotation degree, max rotation degree). \ |
|
Defaults to (-1, 1). |
|
color_prob (float): Probability of images for color augmentation. |
|
Defaults to 0.5. |
|
hflag (bool): Whether to use heatmap guided. Defaults to False. |
|
aug_ratio (float): Probability of applying this transformation. \ |
|
Defaults to 0.5. |
|
""" |
|
|
|
def __init__(self, |
|
action_candidate: tuple = ('normal', 'horizontal', 'skip'), |
|
action_prob: tuple = (1, 0, 0), |
|
scale: tuple = (0.8, 1.2), |
|
dx: int = 15, |
|
dy: int = 15, |
|
theta: tuple = (-1, 1), |
|
color_prob: float = 0.5, |
|
hflag: bool = False, |
|
aug_ratio: float = 0.5) -> None: |
|
|
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
default_backend = plt.get_backend() |
|
|
|
try: |
|
import instaboostfast as instaboost |
|
except ImportError: |
|
raise ImportError( |
|
'Please run "pip install instaboostfast" ' |
|
'to install instaboostfast first for instaboost augmentation.') |
|
|
|
|
|
|
|
matplotlib.use(default_backend) |
|
|
|
self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob, |
|
scale, dx, dy, theta, |
|
color_prob, hflag) |
|
self.aug_ratio = aug_ratio |
|
|
|
def _load_anns(self, results: dict) -> Tuple[list, list]: |
|
"""Convert raw anns to instaboost expected input format.""" |
|
anns = [] |
|
ignore_anns = [] |
|
for instance in results['instances']: |
|
label = instance['bbox_label'] |
|
bbox = instance['bbox'] |
|
mask = instance['mask'] |
|
x1, y1, x2, y2 = bbox |
|
|
|
bbox = [x1, y1, x2 - x1, y2 - y1] |
|
|
|
if instance['ignore_flag'] == 0: |
|
anns.append({ |
|
'category_id': label, |
|
'segmentation': mask, |
|
'bbox': bbox |
|
}) |
|
else: |
|
|
|
ignore_anns.append(instance) |
|
return anns, ignore_anns |
|
|
|
def _parse_anns(self, results: dict, anns: list, ignore_anns: list, |
|
img: np.ndarray) -> dict: |
|
"""Restore the result of instaboost processing to the original anns |
|
format.""" |
|
instances = [] |
|
for ann in anns: |
|
x1, y1, w, h = ann['bbox'] |
|
|
|
if w <= 0 or h <= 0: |
|
continue |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
instances.append( |
|
dict( |
|
bbox=bbox, |
|
bbox_label=ann['category_id'], |
|
mask=ann['segmentation'], |
|
ignore_flag=0)) |
|
|
|
instances.extend(ignore_anns) |
|
results['img'] = img |
|
results['instances'] = instances |
|
return results |
|
|
|
def transform(self, results) -> dict: |
|
"""The transform function.""" |
|
img = results['img'] |
|
ori_type = img.dtype |
|
if 'instances' not in results or len(results['instances']) == 0: |
|
return results |
|
|
|
anns, ignore_anns = self._load_anns(results) |
|
if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]): |
|
try: |
|
import instaboostfast as instaboost |
|
except ImportError: |
|
raise ImportError('Please run "pip install instaboostfast" ' |
|
'to install instaboostfast first.') |
|
anns, img = instaboost.get_new_data( |
|
anns, img.astype(np.uint8), self.cfg, background=None) |
|
|
|
results = self._parse_anns(results, anns, ignore_anns, |
|
img.astype(ori_type)) |
|
return results |
|
|
|
def __repr__(self) -> str: |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(aug_ratio={self.aug_ratio})' |
|
return repr_str |
|
|