scfive
Resolve README.md conflict and continue rebase
e8f2571
raw
history blame contribute delete
3.03 kB
import random
from typing import Optional, Tuple, Union
import torch
import numpy as np
import mmcv
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmengine.structures import InstanceData, PixelData
from mmdet.registry import TRANSFORMS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import BaseBoxes
import mmengine.fileio as fileio
import cv2
import matplotlib.pyplot as plt
# def hsifromfile(img_path, backend='npy' ) -> np.ndarray:
# """Read an image from bytes.
#
# Args:
# backend (str | None): The image decoding backend type.
# Returns:
# ndarray: Loaded image array.
#
# Examples:
# """
# if backend =='npy':
# img = np.load(img_path)
# return img
@TRANSFORMS.register_module()
class LoadSIRSTImageFromFiles(BaseTransform):
"""Load multi-channel images from a list of separate channel files.
Required Keys:
- img_path
Modified Keys:
- img
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def __init__(
self,
to_float32: bool = False,
normalized_basis = None,
range_change = False,
) -> None:
self.to_float32 = to_float32
self.normalized_basis = normalized_basis
self.range_change = range_change
def transform(self, results: dict) -> dict:
"""Transform functions to load multiple images and get images meta
information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded images and meta information.
"""
# img = hsifromfile(results['img_path'])
img = plt.imread(results['img_path'])
# up_limit = 3500
# low_limit = 600
# new_img = (img - low_limit) / up_limit
# new_img[new_img > 1] = 1
# new_img[new_img < 0] = 0
# img = new_img * 255
# if self.normalized_basis == None:
# img = img/500
# else:
# img = img/255
# img = img[:,:,0]
if len(img.shape) == 2:
img = np.repeat(np.expand_dims(img, axis=-1), 3, axis=-1)
# print(img.shape)
if img.shape[-1] !=3:
img = img[:,:,:3]
if self.to_float32:
img = img.astype(np.float32)
img = (img-np.min(img))/(np.max(img)-np.min(img)+1e-8)
if self.range_change ==True:
img = (0.7+random.random()*0.3)*img
# img = img + random.random()*0.2
results['img'] = img
results['img_shape'] = img.shape[:2]
results['ori_shape'] = img.shape[:2]
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'to_float32={self.to_float32}, ')
return repr_str