scfive
Resolve README.md conflict and continue rebase
e8f2571
raw
history blame contribute delete
5.52 kB
from ..formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose
import numpy as np
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmengine.structures import InstanceData, PixelData
from mmdet.registry import TRANSFORMS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import BaseBoxes
@TRANSFORMS.register_module()
class PackDetInputsPiexlTarget(PackDetInputs):
"""Pack the inputs data for the detection / semantic segmentation /
panoptic segmentation.
The ``img_meta`` item is always populated. The contents of the
``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- ``img_id``: id of the image
- ``img_path``: path to the image file
- ``ori_shape``: original shape of the image as a tuple (h, w)
- ``img_shape``: shape of the image input to the network as a tuple \
(h, w). Note that images may be zero padded on the \
bottom/right if the batch tensor is larger than this shape.
- ``scale_factor``: a float indicating the preprocessing scale
- ``flip``: a boolean indicating if image flip transform was used
- ``flip_direction``: the flipping direction
Args:
meta_keys (Sequence[str], optional): Meta keys to be converted to
``mmcv.DataContainer`` and collected in ``data[img_metas]``.
Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')``
"""
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
- 'data_sample' (obj:`DetDataSample`): The annotation info of the
sample.
"""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
# To improve the computational speed by by 3-5 times, apply:
# If image is not contiguous, use
# `numpy.transpose()` followed by `numpy.ascontiguousarray()`
# If image is already contiguous, use
# `torch.permute()` followed by `torch.contiguous()`
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533
# for more details
if not img.flags.c_contiguous:
img = np.ascontiguousarray(img.transpose(2, 0, 1))
img = to_tensor(img)
else:
img = to_tensor(img).permute(2, 0, 1).contiguous()
packed_results['inputs'] = img
if 'gt_ignore_flags' in results:
valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
data_sample = DetDataSample()
instance_data = InstanceData()
ignore_instance_data = InstanceData()
for key in self.mapping_table.keys():
if key not in results:
continue
if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
if 'gt_ignore_flags' in results:
instance_data[
self.mapping_table[key]] = results[key][valid_idx]
ignore_instance_data[
self.mapping_table[key]] = results[key][ignore_idx]
else:
instance_data[self.mapping_table[key]] = results[key]
else:
if 'gt_ignore_flags' in results:
instance_data[self.mapping_table[key]] = to_tensor(
results[key][valid_idx])
ignore_instance_data[self.mapping_table[key]] = to_tensor(
results[key][ignore_idx])
else:
instance_data[self.mapping_table[key]] = to_tensor(
results[key])
data_sample.gt_instances = instance_data
data_sample.ignored_instances = ignore_instance_data
if 'proposals' in results:
proposals = InstanceData(
bboxes=to_tensor(results['proposals']),
scores=to_tensor(results['proposals_scores']))
data_sample.proposals = proposals
if 'gt_seg_map' in results:
gt_sem_seg_data = dict(
sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
if 'gt_seg' in results:
if 'gt_abu' in results:
gt_pixel_data = dict(
seg=to_tensor(results['gt_seg'][None, ...].copy()),
abu=to_tensor(results['gt_abu'][None, ...].copy()),
)
else:
gt_pixel_data = dict(
seg=to_tensor(results['gt_seg'][None, ...].copy()),
)
data_sample.gt_pixel = PixelData(**gt_pixel_data)
img_meta = {}
for key in self.meta_keys:
assert key in results, f'`{key}` is not found in `results`, ' \
f'the valid keys are {list(results)}.'
img_meta[key] = results[key]
data_sample.set_metainfo(img_meta)
packed_results['data_samples'] = data_sample
return packed_results