|
|
|
import math |
|
from typing import Dict, Iterator, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from mmengine.dataset import BaseDataset |
|
from mmengine.dist import get_dist_info, sync_random_seed |
|
from torch.utils.data import Sampler |
|
|
|
from mmdet.registry import DATA_SAMPLERS |
|
|
|
|
|
@DATA_SAMPLERS.register_module() |
|
class ClassAwareSampler(Sampler): |
|
r"""Sampler that restricts data loading to the label of the dataset. |
|
|
|
A class-aware sampling strategy to effectively tackle the |
|
non-uniform class distribution. The length of the training data is |
|
consistent with source data. Simple improvements based on `Relay |
|
Backpropagation for Effective Learning of Deep Convolutional |
|
Neural Networks <https://arxiv.org/abs/1512.05830>`_ |
|
|
|
The implementation logic is referred to |
|
https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py |
|
|
|
Args: |
|
dataset: Dataset used for sampling. |
|
seed (int, optional): random seed used to shuffle the sampler. |
|
This number should be identical across all |
|
processes in the distributed group. Defaults to None. |
|
num_sample_class (int): The number of samples taken from each |
|
per-label list. Defaults to 1. |
|
""" |
|
|
|
def __init__(self, |
|
dataset: BaseDataset, |
|
seed: Optional[int] = None, |
|
num_sample_class: int = 1) -> None: |
|
rank, world_size = get_dist_info() |
|
self.rank = rank |
|
self.world_size = world_size |
|
|
|
self.dataset = dataset |
|
self.epoch = 0 |
|
|
|
|
|
|
|
if seed is None: |
|
seed = sync_random_seed() |
|
self.seed = seed |
|
|
|
|
|
assert num_sample_class > 0 and isinstance(num_sample_class, int) |
|
self.num_sample_class = num_sample_class |
|
|
|
self.cat_dict = self.get_cat2imgs() |
|
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / world_size)) |
|
self.total_size = self.num_samples * self.world_size |
|
|
|
|
|
self.num_cat_imgs = [len(x) for x in self.cat_dict.values()] |
|
|
|
self.valid_cat_inds = [ |
|
i for i, length in enumerate(self.num_cat_imgs) if length != 0 |
|
] |
|
self.num_classes = len(self.valid_cat_inds) |
|
|
|
def get_cat2imgs(self) -> Dict[int, list]: |
|
"""Get a dict with class as key and img_ids as values. |
|
|
|
Returns: |
|
dict[int, list]: A dict of per-label image list, |
|
the item of the dict indicates a label index, |
|
corresponds to the image index that contains the label. |
|
""" |
|
classes = self.dataset.metainfo.get('classes', None) |
|
if classes is None: |
|
raise ValueError('dataset metainfo must contain `classes`') |
|
|
|
cat2imgs = {i: [] for i in range(len(classes))} |
|
for i in range(len(self.dataset)): |
|
cat_ids = set(self.dataset.get_cat_ids(i)) |
|
for cat in cat_ids: |
|
cat2imgs[cat].append(i) |
|
return cat2imgs |
|
|
|
def __iter__(self) -> Iterator[int]: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch + self.seed) |
|
|
|
|
|
label_iter_list = RandomCycleIter(self.valid_cat_inds, generator=g) |
|
|
|
data_iter_dict = dict() |
|
for i in self.valid_cat_inds: |
|
data_iter_dict[i] = RandomCycleIter(self.cat_dict[i], generator=g) |
|
|
|
def gen_cat_img_inds(cls_list, data_dict, num_sample_cls): |
|
"""Traverse the categories and extract `num_sample_cls` image |
|
indexes of the corresponding categories one by one.""" |
|
id_indices = [] |
|
for _ in range(len(cls_list)): |
|
cls_idx = next(cls_list) |
|
for _ in range(num_sample_cls): |
|
id = next(data_dict[cls_idx]) |
|
id_indices.append(id) |
|
return id_indices |
|
|
|
|
|
num_bins = int( |
|
math.ceil(self.total_size * 1.0 / self.num_classes / |
|
self.num_sample_class)) |
|
indices = [] |
|
for i in range(num_bins): |
|
indices += gen_cat_img_inds(label_iter_list, data_iter_dict, |
|
self.num_sample_class) |
|
|
|
|
|
if len(indices) >= self.total_size: |
|
indices = indices[:self.total_size] |
|
else: |
|
indices += indices[:(self.total_size - len(indices))] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
offset = self.num_samples * self.rank |
|
indices = indices[offset:offset + self.num_samples] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self) -> int: |
|
"""The number of samples in this rank.""" |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch: int) -> None: |
|
"""Sets the epoch for this sampler. |
|
|
|
When :attr:`shuffle=True`, this ensures all replicas use a different |
|
random ordering for each epoch. Otherwise, the next iteration of this |
|
sampler will yield the same ordering. |
|
|
|
Args: |
|
epoch (int): Epoch number. |
|
""" |
|
self.epoch = epoch |
|
|
|
|
|
class RandomCycleIter: |
|
"""Shuffle the list and do it again after the list have traversed. |
|
|
|
The implementation logic is referred to |
|
https://github.com/wutong16/DistributionBalancedLoss/blob/master/mllt/datasets/loader/sampler.py |
|
|
|
Example: |
|
>>> label_list = [0, 1, 2, 4, 5] |
|
>>> g = torch.Generator() |
|
>>> g.manual_seed(0) |
|
>>> label_iter_list = RandomCycleIter(label_list, generator=g) |
|
>>> index = next(label_iter_list) |
|
Args: |
|
data (list or ndarray): The data that needs to be shuffled. |
|
generator: An torch.Generator object, which is used in setting the seed |
|
for generating random numbers. |
|
""" |
|
|
|
def __init__(self, |
|
data: Union[list, np.ndarray], |
|
generator: torch.Generator = None) -> None: |
|
self.data = data |
|
self.length = len(data) |
|
self.index = torch.randperm(self.length, generator=generator).numpy() |
|
self.i = 0 |
|
self.generator = generator |
|
|
|
def __iter__(self) -> Iterator: |
|
return self |
|
|
|
def __len__(self) -> int: |
|
return len(self.data) |
|
|
|
def __next__(self): |
|
if self.i == self.length: |
|
self.index = torch.randperm( |
|
self.length, generator=self.generator).numpy() |
|
self.i = 0 |
|
idx = self.data[self.index[self.i]] |
|
self.i += 1 |
|
return idx |
|
|