|
|
|
import csv |
|
import os.path as osp |
|
from collections import defaultdict |
|
from typing import Dict, List, Optional |
|
|
|
import numpy as np |
|
from mmengine.fileio import get_local_path, load |
|
from mmengine.utils import is_abs |
|
|
|
from mmdet.registry import DATASETS |
|
from .base_det_dataset import BaseDetDataset |
|
|
|
|
|
@DATASETS.register_module() |
|
class OpenImagesDataset(BaseDetDataset): |
|
"""Open Images dataset for detection. |
|
|
|
Args: |
|
ann_file (str): Annotation file path. |
|
label_file (str): File path of the label description file that |
|
maps the classes names in MID format to their short |
|
descriptions. |
|
meta_file (str): File path to get image metas. |
|
hierarchy_file (str): The file path of the class hierarchy. |
|
image_level_ann_file (str): Human-verified image level annotation, |
|
which is used in evaluation. |
|
backend_args (dict, optional): Arguments to instantiate the |
|
corresponding backend. Defaults to None. |
|
""" |
|
|
|
METAINFO: dict = dict(dataset_type='oid_v6') |
|
|
|
def __init__(self, |
|
label_file: str, |
|
meta_file: str, |
|
hierarchy_file: str, |
|
image_level_ann_file: Optional[str] = None, |
|
**kwargs) -> None: |
|
self.label_file = label_file |
|
self.meta_file = meta_file |
|
self.hierarchy_file = hierarchy_file |
|
self.image_level_ann_file = image_level_ann_file |
|
super().__init__(**kwargs) |
|
|
|
def load_data_list(self) -> List[dict]: |
|
"""Load annotations from an annotation file named as ``self.ann_file`` |
|
|
|
Returns: |
|
List[dict]: A list of annotation. |
|
""" |
|
classes_names, label_id_mapping = self._parse_label_file( |
|
self.label_file) |
|
self._metainfo['classes'] = classes_names |
|
self.label_id_mapping = label_id_mapping |
|
|
|
if self.image_level_ann_file is not None: |
|
img_level_anns = self._parse_img_level_ann( |
|
self.image_level_ann_file) |
|
else: |
|
img_level_anns = None |
|
|
|
|
|
relation_matrix = self._get_relation_matrix(self.hierarchy_file) |
|
self._metainfo['RELATION_MATRIX'] = relation_matrix |
|
|
|
data_list = [] |
|
with get_local_path( |
|
self.ann_file, backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
reader = csv.reader(f) |
|
last_img_id = None |
|
instances = [] |
|
for i, line in enumerate(reader): |
|
if i == 0: |
|
continue |
|
img_id = line[0] |
|
if last_img_id is None: |
|
last_img_id = img_id |
|
label_id = line[2] |
|
assert label_id in self.label_id_mapping |
|
label = int(self.label_id_mapping[label_id]) |
|
bbox = [ |
|
float(line[4]), |
|
float(line[6]), |
|
float(line[5]), |
|
float(line[7]) |
|
] |
|
is_occluded = True if int(line[8]) == 1 else False |
|
is_truncated = True if int(line[9]) == 1 else False |
|
is_group_of = True if int(line[10]) == 1 else False |
|
is_depiction = True if int(line[11]) == 1 else False |
|
is_inside = True if int(line[12]) == 1 else False |
|
|
|
instance = dict( |
|
bbox=bbox, |
|
bbox_label=label, |
|
ignore_flag=0, |
|
is_occluded=is_occluded, |
|
is_truncated=is_truncated, |
|
is_group_of=is_group_of, |
|
is_depiction=is_depiction, |
|
is_inside=is_inside) |
|
last_img_path = osp.join(self.data_prefix['img'], |
|
f'{last_img_id}.jpg') |
|
if img_id != last_img_id: |
|
|
|
data_info = dict( |
|
img_path=last_img_path, |
|
img_id=last_img_id, |
|
instances=instances, |
|
) |
|
data_list.append(data_info) |
|
instances = [] |
|
instances.append(instance) |
|
last_img_id = img_id |
|
data_list.append( |
|
dict( |
|
img_path=last_img_path, |
|
img_id=last_img_id, |
|
instances=instances, |
|
)) |
|
|
|
|
|
img_metas = load( |
|
self.meta_file, file_format='pkl', backend_args=self.backend_args) |
|
assert len(img_metas) == len(data_list) |
|
for i, meta in enumerate(img_metas): |
|
img_id = data_list[i]['img_id'] |
|
assert f'{img_id}.jpg' == osp.split(meta['filename'])[-1] |
|
h, w = meta['ori_shape'][:2] |
|
data_list[i]['height'] = h |
|
data_list[i]['width'] = w |
|
|
|
for j in range(len(data_list[i]['instances'])): |
|
data_list[i]['instances'][j]['bbox'][0] *= w |
|
data_list[i]['instances'][j]['bbox'][2] *= w |
|
data_list[i]['instances'][j]['bbox'][1] *= h |
|
data_list[i]['instances'][j]['bbox'][3] *= h |
|
|
|
if img_level_anns is not None: |
|
img_labels = [] |
|
confidences = [] |
|
img_ann_list = img_level_anns.get(img_id, []) |
|
for ann in img_ann_list: |
|
img_labels.append(int(ann['image_level_label'])) |
|
confidences.append(float(ann['confidence'])) |
|
data_list[i]['image_level_labels'] = np.array( |
|
img_labels, dtype=np.int64) |
|
data_list[i]['confidences'] = np.array( |
|
confidences, dtype=np.float32) |
|
return data_list |
|
|
|
def _parse_label_file(self, label_file: str) -> tuple: |
|
"""Get classes name and index mapping from cls-label-description file. |
|
|
|
Args: |
|
label_file (str): File path of the label description file that |
|
maps the classes names in MID format to their short |
|
descriptions. |
|
|
|
Returns: |
|
tuple: Class name of OpenImages. |
|
""" |
|
|
|
index_list = [] |
|
classes_names = [] |
|
with get_local_path( |
|
label_file, backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
reader = csv.reader(f) |
|
for line in reader: |
|
|
|
classes_names.append(line[1]) |
|
index_list.append(line[0]) |
|
index_mapping = {index: i for i, index in enumerate(index_list)} |
|
return classes_names, index_mapping |
|
|
|
def _parse_img_level_ann(self, |
|
img_level_ann_file: str) -> Dict[str, List[dict]]: |
|
"""Parse image level annotations from csv style ann_file. |
|
|
|
Args: |
|
img_level_ann_file (str): CSV style image level annotation |
|
file path. |
|
|
|
Returns: |
|
Dict[str, List[dict]]: Annotations where item of the defaultdict |
|
indicates an image, each of which has (n) dicts. |
|
Keys of dicts are: |
|
|
|
- `image_level_label` (int): Label id. |
|
- `confidence` (float): Labels that are human-verified to be |
|
present in an image have confidence = 1 (positive labels). |
|
Labels that are human-verified to be absent from an image |
|
have confidence = 0 (negative labels). Machine-generated |
|
labels have fractional confidences, generally >= 0.5. |
|
The higher the confidence, the smaller the chance for |
|
the label to be a false positive. |
|
""" |
|
|
|
item_lists = defaultdict(list) |
|
with get_local_path( |
|
img_level_ann_file, |
|
backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
reader = csv.reader(f) |
|
for i, line in enumerate(reader): |
|
if i == 0: |
|
continue |
|
img_id = line[0] |
|
item_lists[img_id].append( |
|
dict( |
|
image_level_label=int( |
|
self.label_id_mapping[line[2]]), |
|
confidence=float(line[3]))) |
|
return item_lists |
|
|
|
def _get_relation_matrix(self, hierarchy_file: str) -> np.ndarray: |
|
"""Get the matrix of class hierarchy from the hierarchy file. Hierarchy |
|
for 600 classes can be found at https://storage.googleapis.com/openimag |
|
es/2018_04/bbox_labels_600_hierarchy_visualizer/circle.html. |
|
|
|
Args: |
|
hierarchy_file (str): File path to the hierarchy for classes. |
|
|
|
Returns: |
|
np.ndarray: The matrix of the corresponding relationship between |
|
the parent class and the child class, of shape |
|
(class_num, class_num). |
|
""" |
|
|
|
hierarchy = load( |
|
hierarchy_file, file_format='json', backend_args=self.backend_args) |
|
class_num = len(self._metainfo['classes']) |
|
relation_matrix = np.eye(class_num, class_num) |
|
relation_matrix = self._convert_hierarchy_tree(hierarchy, |
|
relation_matrix) |
|
return relation_matrix |
|
|
|
def _convert_hierarchy_tree(self, |
|
hierarchy_map: dict, |
|
relation_matrix: np.ndarray, |
|
parents: list = [], |
|
get_all_parents: bool = True) -> np.ndarray: |
|
"""Get matrix of the corresponding relationship between the parent |
|
class and the child class. |
|
|
|
Args: |
|
hierarchy_map (dict): Including label name and corresponding |
|
subcategory. Keys of dicts are: |
|
|
|
- `LabeName` (str): Name of the label. |
|
- `Subcategory` (dict | list): Corresponding subcategory(ies). |
|
relation_matrix (ndarray): The matrix of the corresponding |
|
relationship between the parent class and the child class, |
|
of shape (class_num, class_num). |
|
parents (list): Corresponding parent class. |
|
get_all_parents (bool): Whether get all parent names. |
|
Default: True |
|
|
|
Returns: |
|
ndarray: The matrix of the corresponding relationship between |
|
the parent class and the child class, of shape |
|
(class_num, class_num). |
|
""" |
|
|
|
if 'Subcategory' in hierarchy_map: |
|
for node in hierarchy_map['Subcategory']: |
|
if 'LabelName' in node: |
|
children_name = node['LabelName'] |
|
children_index = self.label_id_mapping[children_name] |
|
children = [children_index] |
|
else: |
|
continue |
|
if len(parents) > 0: |
|
for parent_index in parents: |
|
if get_all_parents: |
|
children.append(parent_index) |
|
relation_matrix[children_index, parent_index] = 1 |
|
relation_matrix = self._convert_hierarchy_tree( |
|
node, relation_matrix, parents=children) |
|
return relation_matrix |
|
|
|
def _join_prefix(self): |
|
"""Join ``self.data_root`` with annotation path.""" |
|
super()._join_prefix() |
|
if not is_abs(self.label_file) and self.label_file: |
|
self.label_file = osp.join(self.data_root, self.label_file) |
|
if not is_abs(self.meta_file) and self.meta_file: |
|
self.meta_file = osp.join(self.data_root, self.meta_file) |
|
if not is_abs(self.hierarchy_file) and self.hierarchy_file: |
|
self.hierarchy_file = osp.join(self.data_root, self.hierarchy_file) |
|
if self.image_level_ann_file and not is_abs(self.image_level_ann_file): |
|
self.image_level_ann_file = osp.join(self.data_root, |
|
self.image_level_ann_file) |
|
|
|
|
|
@DATASETS.register_module() |
|
class OpenImagesChallengeDataset(OpenImagesDataset): |
|
"""Open Images Challenge dataset for detection. |
|
|
|
Args: |
|
ann_file (str): Open Images Challenge box annotation in txt format. |
|
""" |
|
|
|
METAINFO: dict = dict(dataset_type='oid_challenge') |
|
|
|
def __init__(self, ann_file: str, **kwargs) -> None: |
|
if not ann_file.endswith('txt'): |
|
raise TypeError('The annotation file of Open Images Challenge ' |
|
'should be a txt file.') |
|
|
|
super().__init__(ann_file=ann_file, **kwargs) |
|
|
|
def load_data_list(self) -> List[dict]: |
|
"""Load annotations from an annotation file named as ``self.ann_file`` |
|
|
|
Returns: |
|
List[dict]: A list of annotation. |
|
""" |
|
classes_names, label_id_mapping = self._parse_label_file( |
|
self.label_file) |
|
self._metainfo['classes'] = classes_names |
|
self.label_id_mapping = label_id_mapping |
|
|
|
if self.image_level_ann_file is not None: |
|
img_level_anns = self._parse_img_level_ann( |
|
self.image_level_ann_file) |
|
else: |
|
img_level_anns = None |
|
|
|
|
|
relation_matrix = self._get_relation_matrix(self.hierarchy_file) |
|
self._metainfo['RELATION_MATRIX'] = relation_matrix |
|
|
|
data_list = [] |
|
with get_local_path( |
|
self.ann_file, backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
lines = f.readlines() |
|
i = 0 |
|
while i < len(lines): |
|
instances = [] |
|
filename = lines[i].rstrip() |
|
i += 2 |
|
img_gt_size = int(lines[i]) |
|
i += 1 |
|
for j in range(img_gt_size): |
|
sp = lines[i + j].split() |
|
instances.append( |
|
dict( |
|
bbox=[ |
|
float(sp[1]), |
|
float(sp[2]), |
|
float(sp[3]), |
|
float(sp[4]) |
|
], |
|
bbox_label=int(sp[0]) - 1, |
|
ignore_flag=0, |
|
is_group_ofs=True if int(sp[5]) == 1 else False)) |
|
i += img_gt_size |
|
data_list.append( |
|
dict( |
|
img_path=osp.join(self.data_prefix['img'], filename), |
|
instances=instances, |
|
)) |
|
|
|
|
|
img_metas = load( |
|
self.meta_file, file_format='pkl', backend_args=self.backend_args) |
|
assert len(img_metas) == len(data_list) |
|
for i, meta in enumerate(img_metas): |
|
img_id = osp.split(data_list[i]['img_path'])[-1][:-4] |
|
assert img_id == osp.split(meta['filename'])[-1][:-4] |
|
h, w = meta['ori_shape'][:2] |
|
data_list[i]['height'] = h |
|
data_list[i]['width'] = w |
|
data_list[i]['img_id'] = img_id |
|
|
|
for j in range(len(data_list[i]['instances'])): |
|
data_list[i]['instances'][j]['bbox'][0] *= w |
|
data_list[i]['instances'][j]['bbox'][2] *= w |
|
data_list[i]['instances'][j]['bbox'][1] *= h |
|
data_list[i]['instances'][j]['bbox'][3] *= h |
|
|
|
if img_level_anns is not None: |
|
img_labels = [] |
|
confidences = [] |
|
img_ann_list = img_level_anns.get(img_id, []) |
|
for ann in img_ann_list: |
|
img_labels.append(int(ann['image_level_label'])) |
|
confidences.append(float(ann['confidence'])) |
|
data_list[i]['image_level_labels'] = np.array( |
|
img_labels, dtype=np.int64) |
|
data_list[i]['confidences'] = np.array( |
|
confidences, dtype=np.float32) |
|
return data_list |
|
|
|
def _parse_label_file(self, label_file: str) -> tuple: |
|
"""Get classes name and index mapping from cls-label-description file. |
|
|
|
Args: |
|
label_file (str): File path of the label description file that |
|
maps the classes names in MID format to their short |
|
descriptions. |
|
|
|
Returns: |
|
tuple: Class name of OpenImages. |
|
""" |
|
label_list = [] |
|
id_list = [] |
|
index_mapping = {} |
|
with get_local_path( |
|
label_file, backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
reader = csv.reader(f) |
|
for line in reader: |
|
label_name = line[0] |
|
label_id = int(line[2]) |
|
label_list.append(line[1]) |
|
id_list.append(label_id) |
|
index_mapping[label_name] = label_id - 1 |
|
indexes = np.argsort(id_list) |
|
classes_names = [] |
|
for index in indexes: |
|
classes_names.append(label_list[index]) |
|
return classes_names, index_mapping |
|
|
|
def _parse_img_level_ann(self, image_level_ann_file): |
|
"""Parse image level annotations from csv style ann_file. |
|
|
|
Args: |
|
image_level_ann_file (str): CSV style image level annotation |
|
file path. |
|
|
|
Returns: |
|
defaultdict[list[dict]]: Annotations where item of the defaultdict |
|
indicates an image, each of which has (n) dicts. |
|
Keys of dicts are: |
|
|
|
- `image_level_label` (int): of shape 1. |
|
- `confidence` (float): of shape 1. |
|
""" |
|
|
|
item_lists = defaultdict(list) |
|
with get_local_path( |
|
image_level_ann_file, |
|
backend_args=self.backend_args) as local_path: |
|
with open(local_path, 'r') as f: |
|
reader = csv.reader(f) |
|
i = -1 |
|
for line in reader: |
|
i += 1 |
|
if i == 0: |
|
continue |
|
else: |
|
img_id = line[0] |
|
label_id = line[1] |
|
assert label_id in self.label_id_mapping |
|
image_level_label = int( |
|
self.label_id_mapping[label_id]) |
|
confidence = float(line[2]) |
|
item_lists[img_id].append( |
|
dict( |
|
image_level_label=image_level_label, |
|
confidence=confidence)) |
|
return item_lists |
|
|
|
def _get_relation_matrix(self, hierarchy_file: str) -> np.ndarray: |
|
"""Get the matrix of class hierarchy from the hierarchy file. |
|
|
|
Args: |
|
hierarchy_file (str): File path to the hierarchy for classes. |
|
|
|
Returns: |
|
np.ndarray: The matrix of the corresponding |
|
relationship between the parent class and the child class, |
|
of shape (class_num, class_num). |
|
""" |
|
with get_local_path( |
|
hierarchy_file, backend_args=self.backend_args) as local_path: |
|
class_label_tree = np.load(local_path, allow_pickle=True) |
|
return class_label_tree[1:, 1:] |
|
|