|
|
|
import os.path as osp |
|
from typing import Callable, List, Optional, Sequence, Union |
|
|
|
from mmdet.registry import DATASETS |
|
from .api_wrappers import COCOPanoptic |
|
from .coco import CocoDataset |
|
|
|
|
|
@DATASETS.register_module() |
|
class CocoPanopticDataset(CocoDataset): |
|
"""Coco dataset for Panoptic segmentation. |
|
|
|
The annotation format is shown as follows. The `ann` field is optional |
|
for testing. |
|
|
|
.. code-block:: none |
|
|
|
[ |
|
{ |
|
'filename': f'{image_id:012}.png', |
|
'image_id':9 |
|
'segments_info': |
|
[ |
|
{ |
|
'id': 8345037, (segment_id in panoptic png, |
|
convert from rgb) |
|
'category_id': 51, |
|
'iscrowd': 0, |
|
'bbox': (x1, y1, w, h), |
|
'area': 24315 |
|
}, |
|
... |
|
] |
|
}, |
|
... |
|
] |
|
|
|
Args: |
|
ann_file (str): Annotation file path. Defaults to ''. |
|
metainfo (dict, optional): Meta information for dataset, such as class |
|
information. Defaults to None. |
|
data_root (str, optional): The root directory for ``data_prefix`` and |
|
``ann_file``. Defaults to None. |
|
data_prefix (dict, optional): Prefix for training data. Defaults to |
|
``dict(img=None, ann=None, seg=None)``. The prefix ``seg`` which is |
|
for panoptic segmentation map must be not None. |
|
filter_cfg (dict, optional): Config for filter data. Defaults to None. |
|
indices (int or Sequence[int], optional): Support using first few |
|
data in annotation file to facilitate training/testing on a smaller |
|
dataset. Defaults to None which means using all ``data_infos``. |
|
serialize_data (bool, optional): Whether to hold memory using |
|
serialized objects, when enabled, data loader workers can use |
|
shared RAM from master process instead of making a copy. Defaults |
|
to True. |
|
pipeline (list, optional): Processing pipeline. Defaults to []. |
|
test_mode (bool, optional): ``test_mode=True`` means in test phase. |
|
Defaults to False. |
|
lazy_init (bool, optional): Whether to load annotation during |
|
instantiation. In some cases, such as visualization, only the meta |
|
information of the dataset is needed, which is not necessary to |
|
load annotation file. ``Basedataset`` can skip load annotations to |
|
save time by set ``lazy_init=False``. Defaults to False. |
|
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a |
|
None img. The maximum extra number of cycles to get a valid |
|
image. Defaults to 1000. |
|
""" |
|
|
|
METAINFO = { |
|
'classes': |
|
('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', |
|
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', |
|
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', |
|
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', |
|
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', |
|
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', |
|
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', |
|
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', |
|
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', |
|
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', |
|
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', |
|
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', |
|
'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', |
|
'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', |
|
'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', |
|
'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', |
|
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', |
|
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', |
|
'wall-wood', 'water-other', 'window-blind', 'window-other', |
|
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', |
|
'cabinet-merged', 'table-merged', 'floor-other-merged', |
|
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', |
|
'paper-merged', 'food-other-merged', 'building-other-merged', |
|
'rock-merged', 'wall-other-merged', 'rug-merged'), |
|
'thing_classes': |
|
('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', |
|
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', |
|
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', |
|
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', |
|
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', |
|
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', |
|
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', |
|
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', |
|
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', |
|
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', |
|
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', |
|
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', |
|
'scissors', 'teddy bear', 'hair drier', 'toothbrush'), |
|
'stuff_classes': |
|
('banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', |
|
'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', |
|
'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', |
|
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', |
|
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', |
|
'wall-wood', 'water-other', 'window-blind', 'window-other', |
|
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', |
|
'cabinet-merged', 'table-merged', 'floor-other-merged', |
|
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', |
|
'paper-merged', 'food-other-merged', 'building-other-merged', |
|
'rock-merged', 'wall-other-merged', 'rug-merged'), |
|
'palette': |
|
[(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228), |
|
(0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30), |
|
(100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30), |
|
(165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255), |
|
(0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255), |
|
(199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92), |
|
(209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164), |
|
(92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0), |
|
(174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174), |
|
(255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54), |
|
(207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51), |
|
(74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65), |
|
(0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0), |
|
(227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161), |
|
(163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120), |
|
(183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133), |
|
(166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62), |
|
(65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45), |
|
(196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1), |
|
(246, 0, 122), (191, 162, 208), (255, 255, 128), (147, 211, 203), |
|
(150, 100, 100), (168, 171, 172), (146, 112, 198), (210, 170, 100), |
|
(92, 136, 89), (218, 88, 184), (241, 129, 0), (217, 17, 255), |
|
(124, 74, 181), (70, 70, 70), (255, 228, 255), (154, 208, 0), |
|
(193, 0, 92), (76, 91, 113), (255, 180, 195), (106, 154, 176), |
|
(230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55), |
|
(254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255), |
|
(104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74), |
|
(135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149), |
|
(183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153), |
|
(146, 139, 141), (70, 130, 180), (134, 199, 156), (209, 226, 140), |
|
(96, 36, 108), (96, 96, 96), (64, 170, 64), (152, 251, 152), |
|
(208, 229, 228), (206, 186, 171), (152, 161, 64), (116, 112, 0), |
|
(0, 114, 143), (102, 102, 156), (250, 141, 255)] |
|
} |
|
COCOAPI = COCOPanoptic |
|
|
|
ANN_ID_UNIQUE = False |
|
|
|
def __init__(self, |
|
ann_file: str = '', |
|
metainfo: Optional[dict] = None, |
|
data_root: Optional[str] = None, |
|
data_prefix: dict = dict(img=None, ann=None, seg=None), |
|
filter_cfg: Optional[dict] = None, |
|
indices: Optional[Union[int, Sequence[int]]] = None, |
|
serialize_data: bool = True, |
|
pipeline: List[Union[dict, Callable]] = [], |
|
test_mode: bool = False, |
|
lazy_init: bool = False, |
|
max_refetch: int = 1000, |
|
backend_args: dict = None, |
|
**kwargs) -> None: |
|
super().__init__( |
|
ann_file=ann_file, |
|
metainfo=metainfo, |
|
data_root=data_root, |
|
data_prefix=data_prefix, |
|
filter_cfg=filter_cfg, |
|
indices=indices, |
|
serialize_data=serialize_data, |
|
pipeline=pipeline, |
|
test_mode=test_mode, |
|
lazy_init=lazy_init, |
|
max_refetch=max_refetch, |
|
backend_args=backend_args, |
|
**kwargs) |
|
|
|
def parse_data_info(self, raw_data_info: dict) -> dict: |
|
"""Parse raw annotation to target format. |
|
|
|
Args: |
|
raw_data_info (dict): Raw data information load from ``ann_file``. |
|
|
|
Returns: |
|
dict: Parsed annotation. |
|
""" |
|
img_info = raw_data_info['raw_img_info'] |
|
ann_info = raw_data_info['raw_ann_info'] |
|
|
|
|
|
ann_info = [ |
|
ann for ann in ann_info if ann['image_id'] == img_info['img_id'] |
|
] |
|
data_info = {} |
|
|
|
img_path = osp.join(self.data_prefix['img'], img_info['file_name']) |
|
if self.data_prefix.get('seg', None): |
|
seg_map_path = osp.join( |
|
self.data_prefix['seg'], |
|
img_info['file_name'].replace('jpg', 'png')) |
|
else: |
|
seg_map_path = None |
|
data_info['img_path'] = img_path |
|
data_info['img_id'] = img_info['img_id'] |
|
data_info['seg_map_path'] = seg_map_path |
|
data_info['height'] = img_info['height'] |
|
data_info['width'] = img_info['width'] |
|
|
|
instances = [] |
|
segments_info = [] |
|
for ann in ann_info: |
|
instance = {} |
|
x1, y1, w, h = ann['bbox'] |
|
if ann['area'] <= 0 or w < 1 or h < 1: |
|
continue |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
category_id = ann['category_id'] |
|
contiguous_cat_id = self.cat2label[category_id] |
|
|
|
is_thing = self.coco.load_cats(ids=category_id)[0]['isthing'] |
|
if is_thing: |
|
is_crowd = ann.get('iscrowd', False) |
|
instance['bbox'] = bbox |
|
instance['bbox_label'] = contiguous_cat_id |
|
if not is_crowd: |
|
instance['ignore_flag'] = 0 |
|
else: |
|
instance['ignore_flag'] = 1 |
|
is_thing = False |
|
|
|
segment_info = { |
|
'id': ann['id'], |
|
'category': contiguous_cat_id, |
|
'is_thing': is_thing |
|
} |
|
segments_info.append(segment_info) |
|
if len(instance) > 0 and is_thing: |
|
instances.append(instance) |
|
data_info['instances'] = instances |
|
data_info['segments_info'] = segments_info |
|
return data_info |
|
|
|
def filter_data(self) -> List[dict]: |
|
"""Filter images too small or without ground truth. |
|
|
|
Returns: |
|
List[dict]: ``self.data_list`` after filtering. |
|
""" |
|
if self.test_mode: |
|
return self.data_list |
|
|
|
if self.filter_cfg is None: |
|
return self.data_list |
|
|
|
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) |
|
min_size = self.filter_cfg.get('min_size', 0) |
|
|
|
ids_with_ann = set() |
|
|
|
for data_info in self.data_list: |
|
for segment_info in data_info['segments_info']: |
|
if not segment_info['is_thing']: |
|
continue |
|
ids_with_ann.add(data_info['img_id']) |
|
|
|
valid_data_list = [] |
|
for data_info in self.data_list: |
|
img_id = data_info['img_id'] |
|
width = data_info['width'] |
|
height = data_info['height'] |
|
if filter_empty_gt and img_id not in ids_with_ann: |
|
continue |
|
if min(width, height) >= min_size: |
|
valid_data_list.append(data_info) |
|
|
|
return valid_data_list |
|
|