|
|
|
import copy |
|
import os.path as osp |
|
from typing import List, Union |
|
|
|
from mmengine.fileio import get_local_path |
|
|
|
from mmdet.registry import DATASETS |
|
from .api_wrappers import COCO |
|
from .base_det_dataset import BaseDetDataset |
|
|
|
|
|
@DATASETS.register_module() |
|
class CocoDataset(BaseDetDataset): |
|
"""Dataset for COCO.""" |
|
|
|
METAINFO = { |
|
'classes': |
|
('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', |
|
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', |
|
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', |
|
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', |
|
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', |
|
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', |
|
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', |
|
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', |
|
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', |
|
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', |
|
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', |
|
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', |
|
'scissors', 'teddy bear', 'hair drier', 'toothbrush'), |
|
|
|
'palette': |
|
[(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228), |
|
(0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30), |
|
(100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30), |
|
(165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255), |
|
(0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255), |
|
(199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92), |
|
(209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164), |
|
(92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0), |
|
(174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174), |
|
(255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54), |
|
(207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51), |
|
(74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65), |
|
(0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0), |
|
(227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161), |
|
(163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120), |
|
(183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133), |
|
(166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62), |
|
(65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45), |
|
(196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1), |
|
(246, 0, 122), (191, 162, 208)] |
|
} |
|
COCOAPI = COCO |
|
|
|
ANN_ID_UNIQUE = True |
|
|
|
def load_data_list(self) -> List[dict]: |
|
"""Load annotations from an annotation file named as ``self.ann_file`` |
|
|
|
Returns: |
|
List[dict]: A list of annotation. |
|
""" |
|
with get_local_path( |
|
self.ann_file, backend_args=self.backend_args) as local_path: |
|
self.coco = self.COCOAPI(local_path) |
|
|
|
|
|
self.cat_ids = self.coco.get_cat_ids( |
|
cat_names=self.metainfo['classes']) |
|
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} |
|
self.cat_img_map = copy.deepcopy(self.coco.cat_img_map) |
|
|
|
img_ids = self.coco.get_img_ids() |
|
data_list = [] |
|
total_ann_ids = [] |
|
for img_id in img_ids: |
|
raw_img_info = self.coco.load_imgs([img_id])[0] |
|
raw_img_info['img_id'] = img_id |
|
|
|
ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) |
|
raw_ann_info = self.coco.load_anns(ann_ids) |
|
total_ann_ids.extend(ann_ids) |
|
|
|
parsed_data_info = self.parse_data_info({ |
|
'raw_ann_info': |
|
raw_ann_info, |
|
'raw_img_info': |
|
raw_img_info |
|
}) |
|
data_list.append(parsed_data_info) |
|
if self.ANN_ID_UNIQUE: |
|
assert len(set(total_ann_ids)) == len( |
|
total_ann_ids |
|
), f"Annotation ids in '{self.ann_file}' are not unique!" |
|
|
|
del self.coco |
|
|
|
return data_list |
|
|
|
def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]: |
|
"""Parse raw annotation to target format. |
|
|
|
Args: |
|
raw_data_info (dict): Raw data information load from ``ann_file`` |
|
|
|
Returns: |
|
Union[dict, List[dict]]: Parsed annotation. |
|
""" |
|
img_info = raw_data_info['raw_img_info'] |
|
ann_info = raw_data_info['raw_ann_info'] |
|
|
|
data_info = {} |
|
|
|
|
|
img_path = osp.join(self.data_prefix['img'], img_info['file_name']) |
|
if self.data_prefix.get('seg', None): |
|
seg_map_path = osp.join( |
|
self.data_prefix['seg'], |
|
img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix) |
|
else: |
|
seg_map_path = None |
|
data_info['img_path'] = img_path |
|
data_info['img_id'] = img_info['img_id'] |
|
data_info['seg_map_path'] = seg_map_path |
|
data_info['height'] = img_info['height'] |
|
data_info['width'] = img_info['width'] |
|
|
|
instances = [] |
|
for i, ann in enumerate(ann_info): |
|
instance = {} |
|
|
|
if ann.get('ignore', False): |
|
continue |
|
x1, y1, w, h = ann['bbox'] |
|
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) |
|
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) |
|
if inter_w * inter_h == 0: |
|
continue |
|
if ann['area'] <= 0 or w < 1 or h < 1: |
|
continue |
|
if ann['category_id'] not in self.cat_ids: |
|
continue |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
|
|
if ann.get('iscrowd', False): |
|
instance['ignore_flag'] = 1 |
|
else: |
|
instance['ignore_flag'] = 0 |
|
instance['bbox'] = bbox |
|
instance['bbox_label'] = self.cat2label[ann['category_id']] |
|
|
|
if ann.get('segmentation', None): |
|
instance['mask'] = ann['segmentation'] |
|
|
|
instances.append(instance) |
|
data_info['instances'] = instances |
|
return data_info |
|
|
|
def filter_data(self) -> List[dict]: |
|
"""Filter annotations according to filter_cfg. |
|
|
|
Returns: |
|
List[dict]: Filtered results. |
|
""" |
|
if self.test_mode: |
|
return self.data_list |
|
|
|
if self.filter_cfg is None: |
|
return self.data_list |
|
|
|
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) |
|
min_size = self.filter_cfg.get('min_size', 0) |
|
|
|
|
|
ids_with_ann = set(data_info['img_id'] for data_info in self.data_list) |
|
|
|
ids_in_cat = set() |
|
for i, class_id in enumerate(self.cat_ids): |
|
ids_in_cat |= set(self.cat_img_map[class_id]) |
|
|
|
|
|
ids_in_cat &= ids_with_ann |
|
|
|
valid_data_infos = [] |
|
for i, data_info in enumerate(self.data_list): |
|
img_id = data_info['img_id'] |
|
width = data_info['width'] |
|
height = data_info['height'] |
|
if filter_empty_gt and img_id not in ids_in_cat: |
|
continue |
|
if min(width, height) >= min_size: |
|
valid_data_infos.append(data_info) |
|
|
|
return valid_data_infos |
|
|