|
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' |
|
|
|
model = dict( |
|
|
|
|
|
data_preprocessor=dict( |
|
mean=[103.530, 116.280, 123.675], |
|
std=[57.375, 57.120, 58.395], |
|
bgr_to_rgb=False), |
|
backbone=dict( |
|
type='ResNeXt', |
|
depth=101, |
|
groups=32, |
|
base_width=8, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
style='pytorch', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict( |
|
type='LoadAnnotations', |
|
with_bbox=True, |
|
with_mask=True, |
|
poly2mask=False), |
|
dict( |
|
type='RandomChoiceResize', |
|
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), |
|
(1333, 768), (1333, 800)], |
|
keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs'), |
|
] |
|
|
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) |
|
|