_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py' | |
model = dict( | |
backbone=dict( | |
_delete_=True, | |
type='HRNet', | |
extra=dict( | |
stage1=dict( | |
num_modules=1, | |
num_branches=1, | |
block='BOTTLENECK', | |
num_blocks=(4, ), | |
num_channels=(64, )), | |
stage2=dict( | |
num_modules=1, | |
num_branches=2, | |
block='BASIC', | |
num_blocks=(4, 4), | |
num_channels=(32, 64)), | |
stage3=dict( | |
num_modules=4, | |
num_branches=3, | |
block='BASIC', | |
num_blocks=(4, 4, 4), | |
num_channels=(32, 64, 128)), | |
stage4=dict( | |
num_modules=3, | |
num_branches=4, | |
block='BASIC', | |
num_blocks=(4, 4, 4, 4), | |
num_channels=(32, 64, 128, 256))), | |
init_cfg=dict( | |
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')), | |
neck=dict( | |
_delete_=True, | |
type='HRFPN', | |
in_channels=[32, 64, 128, 256], | |
out_channels=256)) | |
# learning policy | |
max_epochs = 20 | |
train_cfg = dict(max_epochs=max_epochs) | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[16, 19], | |
gamma=0.1) | |
] | |