|
_base_ = [ |
|
'../_base_/models/mask-rcnn_r50_fpn.py', |
|
'../_base_/datasets/coco_instance.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
image_size = (640, 640) |
|
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] |
|
|
|
model = dict( |
|
data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), |
|
backbone=dict(norm_cfg=norm_cfg, norm_eval=False), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
norm_cfg=norm_cfg, |
|
num_outs=5), |
|
roi_head=dict( |
|
bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) |
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='RandomResize', |
|
scale=image_size, |
|
ratio_range=(0.8, 1.2), |
|
keep_ratio=True), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='absolute_range', |
|
crop_size=image_size, |
|
allow_negative_crop=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
] |
|
|
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), |
|
dict(type='Resize', scale=image_size, keep_ratio=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
test_dataloader = val_dataloader |
|
|
|
|
|
max_epochs = 50 |
|
train_cfg = dict(max_epochs=max_epochs, val_interval=2) |
|
param_scheduler = [ |
|
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=max_epochs, |
|
by_epoch=True, |
|
milestones=[30, 40], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), |
|
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), |
|
clip_grad=None) |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=64) |
|
|