|
_base_ = [ |
|
'../_base_/datasets/coco_detection.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
|
|
model = dict( |
|
type='FCOS', |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[102.9801, 115.9465, 122.7717], |
|
std=[1.0, 1.0, 1.0], |
|
bgr_to_rgb=False, |
|
pad_size_divisor=32), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron/resnet50_caffe')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=5, |
|
relu_before_extra_convs=True), |
|
bbox_head=dict( |
|
type='FCOSHead', |
|
num_classes=80, |
|
in_channels=256, |
|
stacked_convs=4, |
|
feat_channels=256, |
|
strides=[8, 16, 32, 64, 128], |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='IoULoss', loss_weight=1.0), |
|
loss_centerness=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), |
|
|
|
test_cfg=dict( |
|
nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.5), |
|
max_per_img=100)) |
|
|
|
|
|
param_scheduler = [ |
|
dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=12, |
|
by_epoch=True, |
|
milestones=[8, 11], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
optim_wrapper = dict( |
|
optimizer=dict(lr=0.01), |
|
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), |
|
clip_grad=dict(max_norm=35, norm_type=2)) |
|
|