Collections: | |
- Name: DETR | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- AdamW | |
- Multi Scale Train | |
- Gradient Clip | |
Training Resources: 8x V100 GPUs | |
Architecture: | |
- ResNet | |
- Transformer | |
Paper: | |
URL: https://arxiv.org/abs/2005.12872 | |
Title: 'End-to-End Object Detection with Transformers' | |
README: configs/detr/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/v2.7.0/mmdet/models/detectors/detr.py#L7 | |
Version: v2.7.0 | |
Models: | |
- Name: detr_r50_8xb2-150e_coco | |
In Collection: DETR | |
Config: configs/detr/detr_r50_8xb2-150e_coco.py | |
Metadata: | |
Training Memory (GB): 7.9 | |
Epochs: 150 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 39.9 | |
Weights: https://download.openmmlab.com/mmdetection/v3.0/detr/detr_r50_8xb2-150e_coco/detr_r50_8xb2-150e_coco_20221023_153551-436d03e8.pth | |