|
Collections: |
|
- Name: Deformable Convolutional Networks |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- Deformable Convolution |
|
Paper: |
|
URL: https://arxiv.org/abs/1703.06211 |
|
Title: "Deformable Convolutional Networks" |
|
README: configs/dcn/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15 |
|
Version: v2.0.0 |
|
|
|
Models: |
|
- Name: faster-rcnn_r50_fpn_dconv_c3-c5_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.0 |
|
inference time (ms/im): |
|
- value: 56.18 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.3 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth |
|
|
|
- Name: faster-rcnn_r50_fpn_dpool_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 5.0 |
|
inference time (ms/im): |
|
- value: 58.14 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 38.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth |
|
|
|
- Name: faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.0 |
|
inference time (ms/im): |
|
- value: 80 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth |
|
|
|
- Name: faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 7.3 |
|
inference time (ms/im): |
|
- value: 100 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 44.5 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth |
|
|
|
- Name: mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.5 |
|
inference time (ms/im): |
|
- value: 64.94 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.4 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth |
|
|
|
- Name: mask-rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py |
|
Metadata: |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
- Mixed Precision Training |
|
Training Memory (GB): 3.0 |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.9 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.5 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth |
|
|
|
- Name: mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.5 |
|
inference time (ms/im): |
|
- value: 85.47 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 43.5 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 38.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth |
|
|
|
- Name: cascade-rcnn_r50_fpn_dconv_c3-c5_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.5 |
|
inference time (ms/im): |
|
- value: 68.49 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 43.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth |
|
|
|
- Name: cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.4 |
|
inference time (ms/im): |
|
- value: 90.91 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 45.0 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth |
|
|
|
- Name: cascade-mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.0 |
|
inference time (ms/im): |
|
- value: 100 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 44.4 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 38.6 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth |
|
|
|
- Name: cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 8.0 |
|
inference time (ms/im): |
|
- value: 116.28 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 45.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 39.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth |
|
|
|
- Name: cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco |
|
In Collection: Deformable Convolutional Networks |
|
Config: configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.2 |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 47.3 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 41.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth |
|
|