|
_base_ = ['../_base_/default_runtime.py'] |
|
|
|
model = dict( |
|
type='CrowdDet', |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[103.53, 116.28, 123.675], |
|
std=[57.375, 57.12, 58.395], |
|
bgr_to_rgb=False, |
|
pad_size_divisor=64, |
|
|
|
|
|
|
|
batch_augments=[ |
|
dict(type='BatchResize', scale=(1400, 800), pad_size_divisor=64) |
|
]), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5, |
|
upsample_cfg=dict(mode='bilinear', align_corners=False)), |
|
rpn_head=dict( |
|
type='RPNHead', |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[8], |
|
ratios=[1.0, 2.0, 3.0], |
|
strides=[4, 8, 16, 32, 64], |
|
centers=[(8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0], |
|
clip_border=False), |
|
loss_cls=dict(type='CrossEntropyLoss', loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), |
|
roi_head=dict( |
|
type='MultiInstanceRoIHead', |
|
bbox_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict( |
|
type='RoIAlign', |
|
output_size=7, |
|
sampling_ratio=-1, |
|
aligned=True, |
|
use_torchvision=True), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
bbox_head=dict( |
|
type='MultiInstanceBBoxHead', |
|
with_refine=False, |
|
num_shared_fcs=2, |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=1, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
loss_weight=1.0, |
|
use_sigmoid=False, |
|
reduction='none'), |
|
loss_bbox=dict( |
|
type='SmoothL1Loss', loss_weight=1.0, reduction='none'))), |
|
|
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=(0.3, 0.7), |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=2400, |
|
max_per_img=2000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=2), |
|
rcnn=dict( |
|
assigner=dict( |
|
type='MultiInstanceAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.3, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='MultiInsRandomSampler', |
|
num=512, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
pos_weight=-1, |
|
debug=False)), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=1200, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=2), |
|
rcnn=dict( |
|
nms=dict(type='nms', iou_threshold=0.5), |
|
score_thr=0.01, |
|
max_per_img=500))) |
|
|
|
dataset_type = 'CrowdHumanDataset' |
|
data_root = 'data/CrowdHuman/' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', |
|
'flip_direction')) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='Resize', scale=(1400, 800), keep_ratio=True), |
|
|
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
batch_sampler=None, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotation_train.odgt', |
|
data_prefix=dict(img='Images/'), |
|
filter_cfg=dict(filter_empty_gt=True, min_size=32), |
|
pipeline=train_pipeline, |
|
backend_args=backend_args)) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotation_val.odgt', |
|
data_prefix=dict(img='Images/'), |
|
test_mode=True, |
|
pipeline=test_pipeline, |
|
backend_args=backend_args)) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='CrowdHumanMetric', |
|
ann_file=data_root + 'annotation_val.odgt', |
|
metric=['AP', 'MR', 'JI'], |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=30, val_interval=1) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=800), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=30, |
|
by_epoch=True, |
|
milestones=[24, 27], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=16) |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0001)) |
|
|