|
Models: |
|
- Name: mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/convnext/mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco.py |
|
Metadata: |
|
Training Memory (GB): 7.3 |
|
Epochs: 36 |
|
Training Data: COCO |
|
Training Techniques: |
|
- AdamW |
|
- Mixed Precision Training |
|
Training Resources: 8x A100 GPUs |
|
Architecture: |
|
- ConvNeXt |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 46.2 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 41.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco_20220426_154953-050731f4.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/2201.03545 |
|
Title: 'A ConvNet for the 2020s' |
|
README: configs/convnext/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465 |
|
Version: v2.16.0 |
|
|
|
- Name: cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco |
|
In Collection: Cascade Mask R-CNN |
|
Config: configs/convnext/cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.0 |
|
Epochs: 36 |
|
Training Data: COCO |
|
Training Techniques: |
|
- AdamW |
|
- Mixed Precision Training |
|
Training Resources: 8x A100 GPUs |
|
Architecture: |
|
- ConvNeXt |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 50.3 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 43.6 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220509_204200-8f07c40b.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/2201.03545 |
|
Title: 'A ConvNet for the 2020s' |
|
README: configs/convnext/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465 |
|
Version: v2.25.0 |
|
|
|
- Name: cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco |
|
In Collection: Cascade Mask R-CNN |
|
Config: configs/convnext/cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py |
|
Metadata: |
|
Training Memory (GB): 12.3 |
|
Epochs: 36 |
|
Training Data: COCO |
|
Training Techniques: |
|
- AdamW |
|
- Mixed Precision Training |
|
Training Resources: 8x A100 GPUs |
|
Architecture: |
|
- ConvNeXt |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 51.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 44.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220510_201004-3d24f5a4.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/2201.03545 |
|
Title: 'A ConvNet for the 2020s' |
|
README: configs/convnext/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465 |
|
Version: v2.25.0 |
|
|