|
|
|
import argparse |
|
import re |
|
import tempfile |
|
from collections import OrderedDict |
|
|
|
import torch |
|
from mmengine import Config |
|
|
|
|
|
def is_head(key): |
|
valid_head_list = [ |
|
'bbox_head', 'mask_head', 'semantic_head', 'grid_head', 'mask_iou_head' |
|
] |
|
|
|
return any(key.startswith(h) for h in valid_head_list) |
|
|
|
|
|
def parse_config(config_strings): |
|
temp_file = tempfile.NamedTemporaryFile() |
|
config_path = f'{temp_file.name}.py' |
|
with open(config_path, 'w') as f: |
|
f.write(config_strings) |
|
|
|
config = Config.fromfile(config_path) |
|
is_two_stage = True |
|
is_ssd = False |
|
is_retina = False |
|
reg_cls_agnostic = False |
|
if 'rpn_head' not in config.model: |
|
is_two_stage = False |
|
|
|
if config.model.bbox_head.type == 'SSDHead': |
|
is_ssd = True |
|
elif config.model.bbox_head.type == 'RetinaHead': |
|
is_retina = True |
|
elif isinstance(config.model['bbox_head'], list): |
|
reg_cls_agnostic = True |
|
elif 'reg_class_agnostic' in config.model.bbox_head: |
|
reg_cls_agnostic = config.model.bbox_head \ |
|
.reg_class_agnostic |
|
temp_file.close() |
|
return is_two_stage, is_ssd, is_retina, reg_cls_agnostic |
|
|
|
|
|
def reorder_cls_channel(val, num_classes=81): |
|
|
|
if val.dim() == 1: |
|
new_val = torch.cat((val[1:], val[:1]), dim=0) |
|
|
|
else: |
|
out_channels, in_channels = val.shape[:2] |
|
|
|
if out_channels != num_classes and out_channels % num_classes == 0: |
|
new_val = val.reshape(-1, num_classes, in_channels, *val.shape[2:]) |
|
new_val = torch.cat((new_val[:, 1:], new_val[:, :1]), dim=1) |
|
new_val = new_val.reshape(val.size()) |
|
|
|
elif out_channels == num_classes: |
|
new_val = torch.cat((val[1:], val[:1]), dim=0) |
|
|
|
else: |
|
new_val = val |
|
|
|
return new_val |
|
|
|
|
|
def truncate_cls_channel(val, num_classes=81): |
|
|
|
|
|
if val.dim() == 1: |
|
if val.size(0) % num_classes == 0: |
|
new_val = val[:num_classes - 1] |
|
else: |
|
new_val = val |
|
|
|
else: |
|
out_channels, in_channels = val.shape[:2] |
|
|
|
if out_channels % num_classes == 0: |
|
new_val = val.reshape(num_classes, in_channels, *val.shape[2:])[1:] |
|
new_val = new_val.reshape(-1, *val.shape[1:]) |
|
|
|
else: |
|
new_val = val |
|
|
|
return new_val |
|
|
|
|
|
def truncate_reg_channel(val, num_classes=81): |
|
|
|
if val.dim() == 1: |
|
|
|
if val.size(0) % num_classes == 0: |
|
new_val = val.reshape(num_classes, -1)[:num_classes - 1] |
|
new_val = new_val.reshape(-1) |
|
|
|
else: |
|
new_val = val |
|
|
|
else: |
|
out_channels, in_channels = val.shape[:2] |
|
|
|
if out_channels % num_classes == 0: |
|
new_val = val.reshape(num_classes, -1, in_channels, |
|
*val.shape[2:])[1:] |
|
new_val = new_val.reshape(-1, *val.shape[1:]) |
|
|
|
else: |
|
new_val = val |
|
|
|
return new_val |
|
|
|
|
|
def convert(in_file, out_file, num_classes): |
|
"""Convert keys in checkpoints. |
|
|
|
There can be some breaking changes during the development of mmdetection, |
|
and this tool is used for upgrading checkpoints trained with old versions |
|
to the latest one. |
|
""" |
|
checkpoint = torch.load(in_file) |
|
in_state_dict = checkpoint.pop('state_dict') |
|
out_state_dict = OrderedDict() |
|
meta_info = checkpoint['meta'] |
|
is_two_stage, is_ssd, is_retina, reg_cls_agnostic = parse_config( |
|
'#' + meta_info['config']) |
|
if meta_info['mmdet_version'] <= '0.5.3' and is_retina: |
|
upgrade_retina = True |
|
else: |
|
upgrade_retina = False |
|
|
|
|
|
|
|
|
|
if meta_info['mmdet_version'] < '2.5.0': |
|
upgrade_rpn = True |
|
else: |
|
upgrade_rpn = False |
|
|
|
for key, val in in_state_dict.items(): |
|
new_key = key |
|
new_val = val |
|
if is_two_stage and is_head(key): |
|
new_key = 'roi_head.{}'.format(key) |
|
|
|
|
|
if upgrade_rpn: |
|
m = re.search( |
|
r'(conv_cls|retina_cls|rpn_cls|fc_cls|fcos_cls|' |
|
r'fovea_cls).(weight|bias)', new_key) |
|
else: |
|
m = re.search( |
|
r'(conv_cls|retina_cls|fc_cls|fcos_cls|' |
|
r'fovea_cls).(weight|bias)', new_key) |
|
if m is not None: |
|
print(f'reorder cls channels of {new_key}') |
|
new_val = reorder_cls_channel(val, num_classes) |
|
|
|
|
|
if upgrade_rpn: |
|
m = re.search(r'(fc_reg).(weight|bias)', new_key) |
|
else: |
|
m = re.search(r'(fc_reg|rpn_reg).(weight|bias)', new_key) |
|
if m is not None and not reg_cls_agnostic: |
|
print(f'truncate regression channels of {new_key}') |
|
new_val = truncate_reg_channel(val, num_classes) |
|
|
|
|
|
m = re.search(r'(conv_logits).(weight|bias)', new_key) |
|
if m is not None: |
|
print(f'truncate mask prediction channels of {new_key}') |
|
new_val = truncate_cls_channel(val, num_classes) |
|
|
|
m = re.search(r'(cls_convs|reg_convs).\d.(weight|bias)', key) |
|
|
|
|
|
|
|
if m is not None and upgrade_retina: |
|
param = m.groups()[1] |
|
new_key = key.replace(param, f'conv.{param}') |
|
out_state_dict[new_key] = val |
|
print(f'rename the name of {key} to {new_key}') |
|
continue |
|
|
|
m = re.search(r'(cls_convs).\d.(weight|bias)', key) |
|
if m is not None and is_ssd: |
|
print(f'reorder cls channels of {new_key}') |
|
new_val = reorder_cls_channel(val, num_classes) |
|
|
|
out_state_dict[new_key] = new_val |
|
checkpoint['state_dict'] = out_state_dict |
|
torch.save(checkpoint, out_file) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Upgrade model version') |
|
parser.add_argument('in_file', help='input checkpoint file') |
|
parser.add_argument('out_file', help='output checkpoint file') |
|
parser.add_argument( |
|
'--num-classes', |
|
type=int, |
|
default=81, |
|
help='number of classes of the original model') |
|
args = parser.parse_args() |
|
convert(args.in_file, args.out_file, args.num_classes) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|