File size: 43,118 Bytes
e8f2571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
from typing import Optional, Tuple, Union,List
import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
# from mmcv.ops import MultiScaleDeformableAttention
from .specdetr_atten import MultiScaleDeformableAttention_1 as MultiScaleDeformableAttention
from mmengine.model import ModuleList
from torch import Tensor, nn
from mmengine.model import BaseModule
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh,bbox_cxcywh_to_xyxy
from mmengine import ConfigDict
from mmdet.utils import ConfigType, OptConfigType
# from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer,
# DetrTransformerEncoder, DetrTransformerEncoderLayer)
from .utils import MLP, coordinate_to_encoding, inverse_sigmoid
import random
import math
class SpecDetrTransformerEncoder(BaseModule):
"""Transformer encoder of Deformable DETR.Encoder of DETR.
Args:
num_layers (int): Number of encoder layers.
layer_cfg (:obj:`ConfigDict` or dict): the config of each encoder
layer. All the layers will share the same config.
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
the initialization. Defaults to None.
"""
def __init__(self,
num_layers: int,
layer_cfg: ConfigType,
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.num_layers = num_layers
self.layer_cfg = layer_cfg
self._init_layers()
self.save_id = 0
def _init_layers(self) -> None:
"""Initialize encoder layers."""
self.layers = ModuleList([
SpecDetrTransformerEncoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
self.embed_dims = self.layers[0].embed_dims
def forward(self, query: Tensor, query_pos: Tensor,
key_padding_mask: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor, valid_ratios: Tensor,
**kwargs) -> Tensor:
"""Forward function of Transformer encoder.
Args:
query (Tensor): The input query, has shape (bs, num_queries, dim).
query_pos (Tensor): The positional encoding for query, has shape
(bs, num_queries, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor, has shape (bs, num_queries).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
Tensor: Output queries of Transformer encoder, which is also
called 'encoder output embeddings' or 'memory', has shape
(bs, num_queries, dim)
"""
reference_points = self.get_encoder_reference_points(
spatial_shapes, valid_ratios, device=query.device)
for i, layer in enumerate(self.layers):
if self.save_id in [21] and i == 5:
[]
query = layer(
query=query,
query_pos=query_pos,
key_padding_mask=key_padding_mask,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reference_points=reference_points,
**kwargs)
# if self.save_id in [5,50,100,150,200,250,300,350,400,450]:
# np.save('/media/ubuntu/data/my_HTD_dataset/paper_fig/feat_map1/f'+str(i+1)+'_'+'{:03d}'.format(self.save_id), query[:,:-1].view(128,128,256).detach().cpu().numpy())
# np.save(
# '/media/ubuntu/data/my_HTD_dataset/paper_fig/feat_map1/g' + str(i+1) + '_' + '{:03d}'.format(
# self.save_id),
# np.squeeze(query[:,-1].detach().cpu().numpy()))
self.save_id += 1
return query
@staticmethod
def get_encoder_reference_points(
spatial_shapes: Tensor, valid_ratios: Tensor,
device: Union[torch.device, str]) -> Tensor:
"""Get the reference points used in encoder.
Args:
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
device (obj:`device` or str): The device acquired by the
`reference_points`.
Returns:
Tensor: Reference points used in decoder, has shape (bs, length,
num_levels, 2).
"""
reference_points_list = []
for lvl, (H, W) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(
0.5, H - 0.5, H, dtype=torch.float32, device=device),
torch.linspace(
0.5, W - 0.5, W, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 1] * H)
ref_x = ref_x.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 0] * W)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
# [bs, sum(hw), num_level, 2]
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
class SpecDetrTransformerDecoder(BaseModule):
"""Transformer encoder of DINO.Decoder of DETR.
Args:
num_layers (int): Number of decoder layers.
layer_cfg (:obj:`ConfigDict` or dict): the config of each encoder
layer. All the layers will share the same config.
post_norm_cfg (:obj:`ConfigDict` or dict, optional): Config of the
post normalization layer. Defaults to `LN`.
return_intermediate (bool, optional): Whether to return outputs of
intermediate layers. Defaults to `True`,
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
the initialization. Defaults to None.
"""
def __init__(self,
num_layers: int,
layer_cfg: ConfigType,
post_norm_cfg: OptConfigType = dict(type='LN'),
return_intermediate: bool = True,
init_cfg: Union[dict, ConfigDict] = None) -> None:
super().__init__(init_cfg=init_cfg)
self.layer_cfg = layer_cfg
self.num_layers = num_layers
self.post_norm_cfg = post_norm_cfg
self.return_intermediate = return_intermediate
self._init_layers()
def _init_layers(self) -> None:
"""Initialize decoder layers."""
self.layers = ModuleList([
SpecDetrTransformerDecoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
self.embed_dims = self.layers[0].embed_dims
if self.post_norm_cfg is not None:
raise ValueError('There is not post_norm in '
f'{self._get_name()}')
self.ref_point_head = MLP(self.embed_dims * 2, self.embed_dims,
self.embed_dims, 2)
self.norm = nn.LayerNorm(self.embed_dims)
def forward(self, query: Tensor, value: Tensor, key_padding_mask: Tensor,
self_attn_mask: Tensor, reference_points: Tensor,
spatial_shapes: Tensor, level_start_index: Tensor,
valid_ratios: Tensor, reg_branches: nn.ModuleList,
**kwargs) -> Tensor:
"""Forward function of Transformer encoder.
Args:
query (Tensor): The input query, has shape (num_queries, bs, dim).
value (Tensor): The input values, has shape (num_value, bs, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor, has shape (num_queries, bs).
self_attn_mask (Tensor): The attention mask to prevent information
leakage from different denoising groups and matching parts, has
shape (num_queries_total, num_queries_total). It is `None` when
`self.training` is `False`.
reference_points (Tensor): The initial reference, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
reg_branches: (obj:`nn.ModuleList`): Used for refining the
regression results.
Returns:
Tensor: Output queries of Transformer encoder, which is also
called 'encoder output embeddings' or 'memory', has shape
(num_queries, bs, dim)
"""
intermediate = []
intermediate_reference_points = [reference_points]
for lid, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = \
reference_points[:, :, None] * torch.cat(
[valid_ratios, valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = \
reference_points[:, :, None] * valid_ratios[:, None]
query_sine_embed = coordinate_to_encoding(
reference_points_input[:, :, 0, :], self.embed_dims/2 )
query_pos = self.ref_point_head(query_sine_embed)
query = layer(
query,
query_pos=query_pos,
value=value,
key_padding_mask=key_padding_mask,
self_attn_mask=self_attn_mask,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reference_points=reference_points_input,
**kwargs)
if reg_branches is not None:
tmp = reg_branches[lid](query)
assert reference_points.shape[-1] == 4
new_reference_points = tmp + inverse_sigmoid(
reference_points, eps=1e-3)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
if self.return_intermediate:
intermediate.append(self.norm(query))
intermediate_reference_points.append(new_reference_points)
# NOTE this is for the "Look Forward Twice" module,
# in the DeformDETR, reference_points was appended.
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(
intermediate_reference_points)
return query, reference_points
class SpecDetrTransformerEncoderLayer(BaseModule):
"""Encoder layer of Deformable DETR.
Implements encoder layer in DETR transformer.
Args:
self_attn_cfg (:obj:`ConfigDict` or dict, optional): Config for self
attention.
ffn_cfg (:obj:`ConfigDict` or dict, optional): Config for FFN.
norm_cfg (:obj:`ConfigDict` or dict, optional): Config for
normalization layers. All the layers will share the same
config. Defaults to `LN`.
init_cfg (:obj:`ConfigDict` or dict, optional): Config to control
the initialization. Defaults to None.
"""
def __init__(self,
self_attn_cfg: OptConfigType = dict(
embed_dims=256, num_heads=8, dropout=0.0),
ffn_cfg: OptConfigType = dict(
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.,
act_cfg=dict(type='ReLU', inplace=True)),
norm_cfg: OptConfigType = dict(type='LN'),
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.self_attn_cfg = self_attn_cfg
if 'batch_first' not in self.self_attn_cfg:
self.self_attn_cfg['batch_first'] = True
else:
assert self.self_attn_cfg['batch_first'] is True, 'First \
dimension of all DETRs in mmdet is `batch`, \
please set `batch_first` flag.'
self.ffn_cfg = ffn_cfg
self.norm_cfg = norm_cfg
self._init_layers()
def _init_layers(self) -> None:
"""Initialize self_attn, ffn, and norms."""
self.self_attn = MultiScaleDeformableAttention(**self.self_attn_cfg)
self.embed_dims = self.self_attn.embed_dims
self.ffn = FFN(**self.ffn_cfg)
norms_list = [
build_norm_layer(self.norm_cfg, self.embed_dims)[1]
for _ in range(2)
]
self.norms = ModuleList(norms_list)
def forward(self, query: Tensor, query_pos: Tensor,
key_padding_mask: Tensor, **kwargs) -> Tensor:
"""Forward function of an encoder layer.
Args:
query (Tensor): The input query, has shape (bs, num_queries, dim).
query_pos (Tensor): The positional encoding for query, with
the same shape as `query`.
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor. has shape (bs, num_queries).
Returns:
Tensor: forwarded results, has shape (bs, num_queries, dim).
"""
query = self.self_attn(
query=query,
key=query,
value=query,
query_pos=query_pos,
key_pos=query_pos,
key_padding_mask=key_padding_mask,
**kwargs)
query = self.norms[0](query)
query = self.ffn(query)
query = self.norms[1](query)
return query
class SpecDetrTransformerDecoderLayer(BaseModule):
"""Decoder layer of Deformable DETR.
Implements decoder layer in DETR transformer.
Args:
self_attn_cfg (:obj:`ConfigDict` or dict, optional): Config for self
attention.
cross_attn_cfg (:obj:`ConfigDict` or dict, optional): Config for cross
attention.
ffn_cfg (:obj:`ConfigDict` or dict, optional): Config for FFN.
norm_cfg (:obj:`ConfigDict` or dict, optional): Config for
normalization layers. All the layers will share the same
config. Defaults to `LN`.
init_cfg (:obj:`ConfigDict` or dict, optional): Config to control
the initialization. Defaults to None.
"""
def __init__(self,
self_attn_cfg: OptConfigType = dict(
embed_dims=256,
num_heads=8,
dropout=0.0,
batch_first=True),
cross_attn_cfg: OptConfigType = dict(
embed_dims=256,
num_heads=8,
dropout=0.0,
batch_first=True),
ffn_cfg: OptConfigType = dict(
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.,
act_cfg=dict(type='ReLU', inplace=True),
),
norm_cfg: OptConfigType = dict(type='LN'),
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.self_attn_cfg = self_attn_cfg
self.cross_attn_cfg = cross_attn_cfg
if 'batch_first' not in self.self_attn_cfg:
self.self_attn_cfg['batch_first'] = True
else:
assert self.self_attn_cfg['batch_first'] is True, 'First \
dimension of all DETRs in mmdet is `batch`, \
please set `batch_first` flag.'
if 'batch_first' not in self.cross_attn_cfg:
self.cross_attn_cfg['batch_first'] = True
else:
assert self.cross_attn_cfg['batch_first'] is True, 'First \
dimension of all DETRs in mmdet is `batch`, \
please set `batch_first` flag.'
self.ffn_cfg = ffn_cfg
self.norm_cfg = norm_cfg
self._init_layers()
def _init_layers(self) -> None:
"""Initialize self_attn, cross-attn, ffn, and norms."""
# self.self_attn = MultiheadAttention(**self.self_attn_cfg)
self.cross_attn = MultiScaleDeformableAttention(**self.cross_attn_cfg)
self.embed_dims = self.cross_attn.embed_dims
self.ffn = FFN(**self.ffn_cfg)
norms_list = [
build_norm_layer(self.norm_cfg, self.embed_dims)[1]
for _ in range(2)
]
self.norms = ModuleList(norms_list)
def forward(self,
query: Tensor,
key: Tensor = None,
value: Tensor = None,
query_pos: Tensor = None,
key_pos: Tensor = None,
self_attn_mask: Tensor = None,
cross_attn_mask: Tensor = None,
key_padding_mask: Tensor = None,
**kwargs) -> Tensor:
"""
Args:
query (Tensor): The input query, has shape (bs, num_queries, dim).
key (Tensor, optional): The input key, has shape (bs, num_keys,
dim). If `None`, the `query` will be used. Defaults to `None`.
value (Tensor, optional): The input value, has the same shape as
`key`, as in `nn.MultiheadAttention.forward`. If `None`, the
`key` will be used. Defaults to `None`.
query_pos (Tensor, optional): The positional encoding for `query`,
has the same shape as `query`. If not `None`, it will be added
to `query` before forward function. Defaults to `None`.
key_pos (Tensor, optional): The positional encoding for `key`, has
the same shape as `key`. If not `None`, it will be added to
`key` before forward function. If None, and `query_pos` has the
same shape as `key`, then `query_pos` will be used for
`key_pos`. Defaults to None.
self_attn_mask (Tensor, optional): ByteTensor mask, has shape
(num_queries, num_keys), as in `nn.MultiheadAttention.forward`.
Defaults to None.
cross_attn_mask (Tensor, optional): ByteTensor mask, has shape
(num_queries, num_keys), as in `nn.MultiheadAttention.forward`.
Defaults to None.
key_padding_mask (Tensor, optional): The `key_padding_mask` of
`self_attn` input. ByteTensor, has shape (bs, num_value).
Defaults to None.
Returns:
Tensor: forwarded results, has shape (bs, num_queries, dim).
"""
# query = self.self_attn(
# query=query,
# key=query,
# value=query,
# query_pos=query_pos,
# key_pos=query_pos,
# attn_mask=self_attn_mask,
# **kwargs)
# query = self.norms[0](query)
query = self.cross_attn(
query=query,
key=key,
value=value,
query_pos=query_pos,
key_pos=key_pos,
attn_mask=cross_attn_mask,
key_padding_mask=key_padding_mask,
**kwargs)
query = self.norms[0](query)
query = self.ffn(query)
query = self.norms[1](query)
return query
class CdnQueryGenerator(BaseModule):
"""Implement query generator of the Contrastive denoising (CDN) proposed in
`DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object
Detection <https://arxiv.org/abs/2203.03605>`_
Code is modified from the `official github repo
<https://github.com/IDEA-Research/DINO>`_.
Args:
num_classes (int): Number of object classes.
embed_dims (int): The embedding dimensions of the generated queries.
num_matching_queries (int): The queries number of the matching part.
Used for generating dn_mask.
label_noise_scale (float): The scale of label noise, defaults to 0.5.
box_noise_scale (float): The scale of box noise, defaults to 1.0.
group_cfg (:obj:`ConfigDict` or dict, optional): The config of the
denoising queries grouping, includes `dynamic`, `num_dn_queries`,
and `num_groups`. Two grouping strategies, 'static dn groups' and
'dynamic dn groups', are supported. When `dynamic` is `False`,
the `num_groups` should be set, and the number of denoising query
groups will always be `num_groups`. When `dynamic` is `True`, the
`num_dn_queries` should be set, and the group number will be
dynamic to ensure that the denoising queries number will not exceed
`num_dn_queries` to prevent large fluctuations of memory. Defaults
to `None`.
"""
def __init__(self,
num_classes: int,
embed_dims: int,
num_matching_queries: int,
label_noise_scale: float = 0.5,
box_noise_scale: float = 1.0,
query_initial: str = 'one',
group_cfg: OptConfigType = None) -> None:
super().__init__()
self.num_classes = num_classes
self.embed_dims = embed_dims
self.num_matching_queries = num_matching_queries
self.label_noise_scale = label_noise_scale
self.box_noise_scale = box_noise_scale
# prepare grouping strategy
group_cfg = {} if group_cfg is None else group_cfg
self.dynamic_dn_groups = group_cfg.get('dynamic', True)
if self.dynamic_dn_groups:
if 'num_dn_queries' not in group_cfg:
warnings.warn("'num_dn_queries' should be set when using "
'dynamic dn groups, use 100 as default.')
self.num_dn_queries = group_cfg.get('num_dn_queries', 100)
assert isinstance(self.num_dn_queries, int), \
f'Expected the num_dn_queries to have type int, but got ' \
f'{self.num_dn_queries}({type(self.num_dn_queries)}). '
else:
assert 'num_groups' in group_cfg, \
'num_groups should be set when using static dn groups'
self.num_groups = group_cfg['num_groups']
assert isinstance(self.num_groups, int), \
f'Expected the num_groups to have type int, but got ' \
f'{self.num_groups}({type(self.num_groups)}). '
# NOTE The original repo of DINO set the num_embeddings 92 for coco,
# 91 (0~90) of which represents target classes and the 92 (91)
# indicates `Unknown` class. However, the embedding of `unknown` class
# is not used in the original DINO.
# TODO: num_classes + 1 or num_classes ?
self.query_initial =query_initial
if self.query_initial == 'embed':
self.label_embedding = nn.Embedding(self.num_classes, self.embed_dims)
def __call__(self, batch_data_samples: SampleList) -> tuple:
"""Generate contrastive denoising (cdn) queries with ground truth.
max_num_target 为一个batch内各个图像目标数量的最大值
Descriptions of the Number Values in code and comments:
- num_target_total: the total target number of the input batch
samples.
- max_num_target: the max target number of the input batch samples.
- num_noisy_targets: the total targets number after adding noise,
i.e., num_target_total * num_groups * 2.
- num_denoising_queries: the length of the output batched queries,
i.e., max_num_target * num_groups * 2.
NOTE The format of input bboxes in batch_data_samples is unnormalized
(x, y, x, y), and the output bbox queries are embedded by normalized
(cx, cy, w, h) format bboxes going through inverse_sigmoid.
Args:
batch_data_samples (list[:obj:`DetDataSample`]): List of the batch
data samples, each includes `gt_instance` which has attributes
`bboxes` and `labels`. The `bboxes` has unnormalized coordinate
format (x, y, x, y).
Returns:
tuple: The outputs of the dn query generator.
- dn_label_query (Tensor): The output content queries for denoising
part, has shape (bs, num_denoising_queries, dim), where
`num_denoising_queries = max_num_target * num_groups * 2`.
- dn_bbox_query (Tensor): The output reference bboxes as positions
of queries for denoising part, which are embedded by normalized
(cx, cy, w, h) format bboxes going through inverse_sigmoid, has
shape (bs, num_denoising_queries, 4) with the last dimension
arranged as (cx, cy, w, h).
- attn_mask (Tensor): The attention mask to prevent information
leakage from different denoising groups and matching parts,
will be used as `self_attn_mask` of the `decoder`, has shape
(num_queries_total, num_queries_total), where `num_queries_total`
is the sum of `num_denoising_queries` and `num_matching_queries`.
- dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
"""
# normalize bbox and collate ground truth (gt)
gt_labels_list = []
gt_bboxes_list = []
for sample in batch_data_samples:
img_h, img_w = sample.img_shape
bboxes = sample.gt_instances.bboxes
factor = bboxes.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
bboxes_normalized = bboxes / factor
gt_bboxes_list.append(bboxes_normalized)
gt_labels_list.append(sample.gt_instances.labels)
gt_labels = torch.cat(gt_labels_list) # (num_target_total, 4)
gt_bboxes = torch.cat(gt_bboxes_list)
num_target_list = [len(bboxes) for bboxes in gt_bboxes_list]
max_num_target = max(num_target_list)
num_groups = self.get_num_groups(max_num_target)
dn_label_query = self.generate_dn_label_query(gt_labels, num_groups)
dn_bbox_query = self.generate_dn_bbox_query(gt_bboxes, num_groups)
# dn_bbox_query数量为batch内图像目标总数 * 组数 * 2 (正样本和负样本各占一半)
# dn_label_query数量为batch内图像目标总数 * 组数 * 2, 随机选择一定数量的样本设为错误类比标签
# The `batch_idx` saves the batch index of the corresponding sample
# for each target, has shape (num_target_total).
batch_idx = torch.cat([
torch.full_like(t.long(), i) for i, t in enumerate(gt_labels_list)
])
# dn_label_query, dn_bbox_query目前将一个batch内所有图像的正负样本拼接在一起,需要按batch size分开
# 每一张图目标数目不一样,数目同一设为最大目标数*group*2
dn_label_query, dn_bbox_query = self.collate_dn_queries(
dn_label_query, dn_bbox_query, batch_idx, len(batch_data_samples),
num_groups)
# 匹配部分查询和去噪组的查询不做注意力,去噪组与组之间也不做注意力
attn_mask = self.generate_dn_mask(
max_num_target, num_groups, device=dn_label_query.device)
dn_meta = dict(
num_denoising_queries=int(max_num_target * 2 * num_groups),
num_denoising_groups=num_groups)
return dn_label_query, dn_bbox_query, attn_mask, dn_meta
def get_num_groups(self, max_num_target: int = None) -> int:
"""Calculate denoising query groups number.
Two grouping strategies, 'static dn groups' and 'dynamic dn groups',
are supported. When `self.dynamic_dn_groups` is `False`, the number
of denoising query groups will always be `self.num_groups`. When
`self.dynamic_dn_groups` is `True`, the group number will be dynamic,
ensuring the denoising queries number will not exceed
`self.num_dn_queries` to prevent large fluctuations of memory.
NOTE The `num_group` is shared for different samples in a batch. When
the target numbers in the samples varies, the denoising queries of the
samples containing fewer targets are padded to the max length.
Args:
max_num_target (int, optional): The max target number of the batch
samples. It will only be used when `self.dynamic_dn_groups` is
`True`. Defaults to `None`.
Returns:
int: The denoising group number of the current batch.
"""
if self.dynamic_dn_groups:
assert max_num_target is not None, \
'group_queries should be provided when using ' \
'dynamic dn groups'
if max_num_target == 0:
num_groups = 1
else:
num_groups = self.num_dn_queries // max_num_target
else:
num_groups = self.num_groups
if num_groups < 1:
num_groups = 1
return int(num_groups)
def generate_dn_label_query(self, gt_labels: Tensor,
num_groups: int) -> Tensor:
"""Generate noisy labels and their query embeddings.
The strategy for generating noisy labels is: Randomly choose labels of
`self.label_noise_scale * 0.5` proportion and override each of them
with a random object category label.
NOTE Not add noise to all labels. Besides, the `self.label_noise_scale
* 0.5` arg is the ratio of the chosen positions, which is higher than
the actual proportion of noisy labels, because the labels to override
may be correct. And the gap becomes larger as the number of target
categories decreases. The users should notice this and modify the scale
arg or the corresponding logic according to specific dataset.
Args:
gt_labels (Tensor): The concatenated gt labels of all samples
in the batch, has shape (num_target_total, ) where
`num_target_total = sum(num_target_list)`.
num_groups (int): The number of denoising query groups.
Returns:
Tensor: The query embeddings of noisy labels, has shape
(num_noisy_targets, embed_dims), where `num_noisy_targets =
num_target_total * num_groups * 2`.
"""
if self.query_initial == 'one':
dn_label_query = torch.ones((gt_labels.size(0)*num_groups*2, self.embed_dims), device=gt_labels.device)
elif self.query_initial == 'random':
dn_label_query = torch.rand((gt_labels.size(0)*num_groups*2, self.embed_dims), device=gt_labels.device)
elif self.query_initial == 'embed':
gt_labels_expand = gt_labels.repeat(2 * num_groups,
1).view(-1)
dn_label_query = self.label_embedding(gt_labels_expand)
return dn_label_query
def generate_dn_bbox_query(self, gt_bboxes: Tensor,
num_groups: int) -> Tensor:
"""Generate noisy bboxes and their query embeddings.
The strategy for generating noisy bboxes is as follow:
.. code:: text
+--------------------+
| negative |
| +----------+ |
| | positive | |
| | +-----|----+------------+
| | | | | |
| +----+-----+ | |
| | | |
+---------+----------+ |
| |
| gt bbox |
| |
| +---------+----------+
| | | |
| | +----+-----+ |
| | | | | |
+-------------|--- +----+ | |
| | positive | |
| +----------+ |
| negative |
+--------------------+
The random noise is added to the top-left and down-right point
positions, hence, normalized (x, y, x, y) format of bboxes are
required. The noisy bboxes of positive queries have the points
both within the inner square, while those of negative queries
have the points both between the inner and outer squares.
Besides, the length of outer square is twice as long as that of
the inner square, i.e., self.box_noise_scale * w_or_h / 2.
NOTE The noise is added to all the bboxes. Moreover, there is still
unconsidered case when one point is within the positive square and
the others is between the inner and outer squares.
Args:
gt_bboxes (Tensor): The concatenated gt bboxes of all samples
in the batch, has shape (num_target_total, 4) with the last
dimension arranged as (cx, cy, w, h) where
`num_target_total = sum(num_target_list)`.
num_groups (int): The number of denoising query groups.
Returns:
Tensor: The output noisy bboxes, which are embedded by normalized
(cx, cy, w, h) format bboxes going through inverse_sigmoid, has
shape (num_noisy_targets, 4) with the last dimension arranged as
(cx, cy, w, h), where
`num_noisy_targets = num_target_total * num_groups * 2`.
"""
assert self.box_noise_scale > 0
device = gt_bboxes.device
# expand gt_bboxes as groups
gt_bboxes_expand = gt_bboxes.repeat(2 * num_groups, 1) # xyxy
# obtain index of negative queries in gt_bboxes_expand
positive_idx = torch.arange(
len(gt_bboxes), dtype=torch.long, device=device)
positive_idx = positive_idx.unsqueeze(0).repeat(num_groups, 1)
positive_idx += 2 * len(gt_bboxes) * torch.arange(
num_groups, dtype=torch.long, device=device)[:, None]
positive_idx = positive_idx.flatten()
negative_idx = positive_idx + len(gt_bboxes)
bboxes_cxcywh_expand = bbox_xyxy_to_cxcywh(gt_bboxes_expand)
bboxes_whwh = bbox_xyxy_to_cxcywh(gt_bboxes_expand)[:, 2:].repeat(1, 2)
rand_part = torch.rand_like(gt_bboxes_expand) * 2.0 - 1.0
rand_part[:,:2] *= self.label_noise_scale
rand_part[:, 2:] *= self.box_noise_scale
noisy_bboxes_expand = bboxes_cxcywh_expand + torch.mul(rand_part, bboxes_whwh)/2
rand_sign = torch.randint_like(
gt_bboxes_expand, low=0, high=2,
dtype=torch.float32) * 2.0 - 1.0 # [low, high), 1 or -1, randomly
# calculate the random part of the added noise
rand_part = torch.rand_like(gt_bboxes_expand) # [0, 1)
# rand_part = self.label_noise_scale + rand_part *(1-self.label_noise_scale)
rand_part = self.label_noise_scale + rand_part * self.label_noise_scale
# rand_part = 2 + rand_part * 1
rand_part *= rand_sign
noisy_bboxes_expand[negative_idx,:2] = bboxes_cxcywh_expand[negative_idx,:2]+torch.mul(rand_part[negative_idx,2:],bboxes_cxcywh_expand[negative_idx,2:]*0.5)
noisy_bboxes_expand = bbox_cxcywh_to_xyxy(noisy_bboxes_expand)
noisy_bboxes_expand = noisy_bboxes_expand.clamp(min=0.0, max=1.0)
noisy_bboxes_expand = bbox_xyxy_to_cxcywh(noisy_bboxes_expand)
dn_bbox_query = inverse_sigmoid(noisy_bboxes_expand, eps=1e-3)
return dn_bbox_query
def collate_dn_queries(self, input_label_query: Tensor,
input_bbox_query: Tensor, batch_idx: Tensor,
batch_size: int, num_groups: int) -> Tuple[Tensor]:
"""Collate generated queries to obtain batched dn queries.
The strategy for query collation is as follow:
.. code:: text
input_queries (num_target_total, query_dim)
P_A1 P_B1 P_B2 N_A1 N_B1 N_B2 P'A1 P'B1 P'B2 N'A1 N'B1 N'B2
|________ group1 ________| |________ group2 ________|
|
V
P_A1 Pad0 N_A1 Pad0 P'A1 Pad0 N'A1 Pad0
P_B1 P_B2 N_B1 N_B2 P'B1 P'B2 N'B1 N'B2
|____ group1 ____| |____ group2 ____|
batched_queries (batch_size, max_num_target, query_dim)
where query_dim is 4 for bbox and self.embed_dims for label.
Notation: _-group 1; '-group 2;
A-Sample1(has 1 target); B-sample2(has 2 targets)
Args:
input_label_query (Tensor): The generated label queries of all
targets, has shape (num_target_total, embed_dims) where
`num_target_total = sum(num_target_list)`.
input_bbox_query (Tensor): The generated bbox queries of all
targets, has shape (num_target_total, 4) with the last
dimension arranged as (cx, cy, w, h).
batch_idx (Tensor): The batch index of the corresponding sample
for each target, has shape (num_target_total).
batch_size (int): The size of the input batch.
num_groups (int): The number of denoising query groups.
Returns:
tuple[Tensor]: Output batched label and bbox queries.
- batched_label_query (Tensor): The output batched label queries,
has shape (batch_size, max_num_target, embed_dims).
- batched_bbox_query (Tensor): The output batched bbox queries,
has shape (batch_size, max_num_target, 4) with the last dimension
arranged as (cx, cy, w, h).
"""
device = input_label_query.device
num_target_list = [
torch.sum(batch_idx == idx) for idx in range(batch_size)
]
max_num_target = max(num_target_list)
num_denoising_queries = int(max_num_target * 2 * num_groups)
map_query_index = torch.cat([
torch.arange(num_target, device=device)
for num_target in num_target_list
])
map_query_index = torch.cat([
map_query_index + max_num_target * i for i in range(2 * num_groups)
]).long()
batch_idx_expand = batch_idx.repeat(2 * num_groups, 1).view(-1)
mapper = (batch_idx_expand, map_query_index)
batched_label_query = torch.zeros(
batch_size, num_denoising_queries, self.embed_dims, device=device)
batched_bbox_query = torch.zeros(
batch_size, num_denoising_queries, 4, device=device)
batched_label_query[mapper] = input_label_query
batched_bbox_query[mapper] = input_bbox_query
return batched_label_query, batched_bbox_query
def generate_dn_mask(self, max_num_target: int, num_groups: int,
device: Union[torch.device, str]) -> Tensor:
"""Generate attention mask to prevent information leakage from
different denoising groups and matching parts.
.. code:: text
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
max_num_target |_| |_________| num_matching_queries
|_____________| num_denoising_queries
1 -> True (Masked), means 'can not see'.
0 -> False (UnMasked), means 'can see'.
Args:
max_num_target (int): The max target number of the input batch
samples.
num_groups (int): The number of denoising query groups.
device (obj:`device` or str): The device of generated mask.
Returns:
Tensor: The attention mask to prevent information leakage from
different denoising groups and matching parts, will be used as
`self_attn_mask` of the `decoder`, has shape (num_queries_total,
num_queries_total), where `num_queries_total` is the sum of
`num_denoising_queries` and `num_matching_queries`.
"""
num_denoising_queries = int(max_num_target * 2 * num_groups)
num_queries_total = num_denoising_queries + self.num_matching_queries
attn_mask = torch.zeros(
num_queries_total,
num_queries_total,
device=device,
dtype=torch.bool)
return attn_mask
|