File size: 16,107 Bytes
e8f2571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
from numbers import Number
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.dist import barrier, broadcast, get_dist_info
from mmengine.logging import MessageHub
from mmengine.model import BaseDataPreprocessor
from mmengine.structures import PixelData
from mmengine.utils import is_seq_of
from mmengine.model.utils import stack_batch
from torch import Tensor
from mmdet.models.utils import unfold_wo_center
from mmdet.models.utils.misc import samplelist_boxtype2tensor
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.structures.mask import BitmapMasks
from mmdet.utils import ConfigType
import mmcv
import math
try:
import skimage
except ImportError:
skimage = None
@MODELS.register_module()
class HSIImgDataPreprocessor(BaseDataPreprocessor):
"""Image pre-processor for normalization and bgr to rgb conversion.
Accepts the data sampled by the dataloader, and preprocesses it into the
format of the model input. ``ImgDataPreprocessor`` provides the
basic data pre-processing as follows
- Collates and moves data to the target device.
- Converts inputs from bgr to rgb if the shape of input is (3, H, W).
- Normalizes image with defined std and mean.
- Pads inputs to the maximum size of current batch with defined
``pad_value``. The padding size can be divisible by a defined
``pad_size_divisor``
- Stack inputs to batch_inputs.
For ``ImgDataPreprocessor``, the dimension of the single inputs must be
(3, H, W).
Note:
``ImgDataPreprocessor`` and its subclass is built in the
constructor of :class:`BaseDataset`.
Args:
mean (Sequence[float or int], optional): The pixel mean of image
channels. If ``bgr_to_rgb=True`` it means the mean value of R,
G, B channels. If the length of `mean` is 1, it means all
channels have the same mean value, or the input is a gray image.
If it is not specified, images will not be normalized. Defaults
None.
std (Sequence[float or int], optional): The pixel standard deviation of
image channels. If ``bgr_to_rgb=True`` it means the standard
deviation of R, G, B channels. If the length of `std` is 1,
it means all channels have the same standard deviation, or the
input is a gray image. If it is not specified, images will
not be normalized. Defaults None.
pad_size_divisor (int): The size of padded image should be
divisible by ``pad_size_divisor``. Defaults to 1.
pad_value (float or int): The padded pixel value. Defaults to 0.
bgr_to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
non_blocking (bool): Whether block current process
when transferring data to device.
New in version v0.3.0.
Note:
if images do not need to be normalized, `std` and `mean` should be
both set to None, otherwise both of them should be set to a tuple of
corresponding values.
"""
def __init__(self,
mean: Optional[Sequence[Union[float, int]]] = None,
std: Optional[Sequence[Union[float, int]]] = None,
pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0,
non_blocking: Optional[bool] = False):
super().__init__(non_blocking)
assert (mean is None) == (std is None), (
'mean and std should be both None or tuple')
if mean is not None:
self._enable_normalize = True
self.register_buffer('mean',
torch.tensor(mean).view(-1, 1, 1), False)
self.register_buffer('std',
torch.tensor(std).view(-1, 1, 1), False)
else:
self._enable_normalize = False
self.pad_size_divisor = pad_size_divisor
self.pad_value = pad_value
def forward(self, data: dict, training: bool = False) -> Union[dict, list]:
"""Performs normalization、padding and bgr2rgb conversion based on
``BaseDataPreprocessor``.
Args:
data (dict): Data sampled from dataset. If the collate
function of DataLoader is :obj:`pseudo_collate`, data will be a
list of dict. If collate function is :obj:`default_collate`,
data will be a tuple with batch input tensor and list of data
samples.
training (bool): Whether to enable training time augmentation. If
subclasses override this method, they can perform different
preprocessing strategies for training and testing based on the
value of ``training``.
Returns:
dict or list: Data in the same format as the model input.
"""
data = self.cast_data(data) # type: ignore
_batch_inputs = data['inputs']
# Process data with `pseudo_collate`.
if is_seq_of(_batch_inputs, torch.Tensor):
batch_inputs = []
for _batch_input in _batch_inputs:
# efficiency
_batch_input = _batch_input.float()
# Normalization.
batch_inputs.append(_batch_input)
# Pad and stack Tensor.
batch_inputs = stack_batch(batch_inputs, self.pad_size_divisor,
self.pad_value)
# Process data with `default_collate`.
elif isinstance(_batch_inputs, torch.Tensor):
assert _batch_inputs.dim() == 4, (
'The input of `ImgDataPreprocessor` should be a NCHW tensor '
'or a list of tensor, but got a tensor with shape: '
f'{_batch_inputs.shape}')
# Convert to float after channel conversion to ensure
# efficiency
_batch_inputs = _batch_inputs.float()
h, w = _batch_inputs.shape[2:]
target_h = math.ceil(
h / self.pad_size_divisor) * self.pad_size_divisor
target_w = math.ceil(
w / self.pad_size_divisor) * self.pad_size_divisor
pad_h = target_h - h
pad_w = target_w - w
batch_inputs = F.pad(_batch_inputs, (0, pad_w, 0, pad_h),
'constant', self.pad_value)
else:
raise TypeError('Output of `cast_data` should be a dict of '
'list/tuple with inputs and data_samples, '
f'but got {type(data)}: {data}')
data['inputs'] = batch_inputs
data.setdefault('data_samples', None)
return data
@MODELS.register_module()
class HSIDetDataPreprocessor(HSIImgDataPreprocessor):
"""Image pre-processor for detection tasks.
Comparing with the :class:`mmengine.ImgDataPreprocessor`,
1. It supports batch augmentations.
2. It will additionally append batch_input_shape and pad_shape
to data_samples considering the object detection task.
It provides the data pre-processing as follows
- Collate and move data to the target device.
- Pad inputs to the maximum size of current batch with defined
``pad_value``. The padding size can be divisible by a defined
``pad_size_divisor``
- Stack inputs to batch_inputs.
- Convert inputs from bgr to rgb if the shape of input is (3, H, W).
- Normalize image with defined std and mean.
- Do batch augmentations during training.
Args:
mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
Defaults to None.
std (Sequence[Number], optional): The pixel standard deviation of
R, G, B channels. Defaults to None.
pad_size_divisor (int): The size of padded image should be
divisible by ``pad_size_divisor``. Defaults to 1.
pad_value (Number): The padded pixel value. Defaults to 0.
pad_mask (bool): Whether to pad instance masks. Defaults to False.
mask_pad_value (int): The padded pixel value for instance masks.
Defaults to 0.
pad_seg (bool): Whether to pad semantic segmentation maps.
Defaults to False.
seg_pad_value (int): The padded pixel value for semantic
segmentation maps. Defaults to 255.
bgr_to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
boxtype2tensor (bool): Whether to keep the ``BaseBoxes`` type of
bboxes data or not. Defaults to True.
non_blocking (bool): Whether block current process
when transferring data to device. Defaults to False.
batch_augments (list[dict], optional): Batch-level augmentations
"""
def __init__(self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0,
pad_mask: bool = False,
mask_pad_value: int = 0,
pad_seg: bool = False,
seg_pad_value: int = 255,
boxtype2tensor: bool = True,
non_blocking: Optional[bool] = False,
batch_augments: Optional[List[dict]] = None):
super().__init__(
mean=mean,
std=std,
pad_size_divisor=pad_size_divisor,
pad_value=pad_value,
non_blocking=non_blocking)
if batch_augments is not None:
self.batch_augments = nn.ModuleList(
[MODELS.build(aug) for aug in batch_augments])
else:
self.batch_augments = None
self.pad_mask = pad_mask
self.mask_pad_value = mask_pad_value
self.pad_seg = pad_seg
self.seg_pad_value = seg_pad_value
self.boxtype2tensor = boxtype2tensor
def forward(self, data: dict, training: bool = False) -> dict:
"""Perform normalization、padding and bgr2rgb conversion based on
``BaseDataPreprocessor``.
Args:
data (dict): Data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
batch_pad_shape = self._get_pad_shape(data)
data = super().forward(data=data, training=training)
inputs, data_samples = data['inputs'], data['data_samples']
if data_samples is not None:
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
batch_input_shape = tuple(inputs[0].size()[-2:])
for data_sample, pad_shape in zip(data_samples, batch_pad_shape):
data_sample.set_metainfo({
'batch_input_shape': batch_input_shape,
'pad_shape': pad_shape
})
if self.boxtype2tensor:
samplelist_boxtype2tensor(data_samples)
if hasattr(data_samples[0].gt_instances, 'masks') and training:
self.pad_gt_masks(data_samples)
if hasattr(data_samples[0], 'gt_pixel') and training:
self.pad_gt_pixel(data_samples)
# if self.pad_mask and training:
# self.pad_gt_masks(data_samples)
if self.pad_seg and training:
self.pad_gt_sem_seg(data_samples)
if training and self.batch_augments is not None:
for batch_aug in self.batch_augments:
inputs, data_samples = batch_aug(inputs, data_samples)
return {'inputs': inputs, 'data_samples': data_samples}
def _get_pad_shape(self, data: dict) -> List[tuple]:
"""Get the pad_shape of each image based on data and
pad_size_divisor."""
_batch_inputs = data['inputs']
# Process data with `pseudo_collate`.
if is_seq_of(_batch_inputs, torch.Tensor):
batch_pad_shape = []
for ori_input in _batch_inputs:
pad_h = int(
np.ceil(ori_input.shape[1] /
self.pad_size_divisor)) * self.pad_size_divisor
pad_w = int(
np.ceil(ori_input.shape[2] /
self.pad_size_divisor)) * self.pad_size_divisor
batch_pad_shape.append((pad_h, pad_w))
# Process data with `default_collate`.
elif isinstance(_batch_inputs, torch.Tensor):
assert _batch_inputs.dim() == 4, (
'The input of `ImgDataPreprocessor` should be a NCHW tensor '
'or a list of tensor, but got a tensor with shape: '
f'{_batch_inputs.shape}')
pad_h = int(
np.ceil(_batch_inputs.shape[1] /
self.pad_size_divisor)) * self.pad_size_divisor
pad_w = int(
np.ceil(_batch_inputs.shape[2] /
self.pad_size_divisor)) * self.pad_size_divisor
batch_pad_shape = [(pad_h, pad_w)] * _batch_inputs.shape[0]
else:
raise TypeError('Output of `cast_data` should be a dict '
'or a tuple with inputs and data_samples, but got'
f'{type(data)}: {data}')
return batch_pad_shape
def pad_gt_masks(self,
batch_data_samples: Sequence[DetDataSample]) -> None:
"""Pad gt_masks to shape of batch_input_shape."""
if 'masks' in batch_data_samples[0].gt_instances:
for data_samples in batch_data_samples:
masks = data_samples.gt_instances.masks
data_samples.gt_instances.masks = masks.pad(
data_samples.batch_input_shape,
pad_val=self.mask_pad_value)
def pad_gt_pixel(self,
batch_data_samples: Sequence[DetDataSample]) -> None:
"""Pad gt_masks to shape of batch_input_shape."""
for data_samples in batch_data_samples:
seg=data_samples.gt_pixel.seg
h, w = data_samples.gt_pixel.shape[-2:]
pad_h, pad_w = data_samples.batch_input_shape
seg = F.pad(
seg,
pad=(0, max(pad_w - w, 0), 0, max(pad_h - h, 0)),
mode='constant',
value=0)
if hasattr(data_samples.gt_pixel, 'abu'):
abu = data_samples.gt_pixel.abu
abu = F.pad(
abu,
pad=(0, max(pad_w - w, 0), 0, max(pad_h - h, 0)),
mode='constant',
value=0)
data_samples.gt_pixel = PixelData(seg=seg, abu=abu)
else:
data_samples.gt_pixel = PixelData(seg=seg,)
def pad_gt_sem_seg(self,
batch_data_samples: Sequence[DetDataSample]) -> None:
"""Pad gt_sem_seg to shape of batch_input_shape."""
if 'gt_sem_seg' in batch_data_samples[0]:
for data_samples in batch_data_samples:
gt_sem_seg = data_samples.gt_sem_seg.sem_seg
h, w = gt_sem_seg.shape[-2:]
pad_h, pad_w = data_samples.batch_input_shape
gt_sem_seg = F.pad(
gt_sem_seg,
pad=(0, max(pad_w - w, 0), 0, max(pad_h - h, 0)),
mode='constant',
value=self.seg_pad_value)
data_samples.gt_sem_seg = PixelData(sem_seg=gt_sem_seg)
|