File size: 22,670 Bytes
e8f2571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
from mmcv.transforms import to_tensor
from mmengine.structures import InstanceData, PixelData
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import BaseBoxes
import mmengine.fileio as fileio
from typing import Optional, Tuple, Union
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.transforms import BaseTransform
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import get_box_type
from mmdet.structures.mask import BitmapMasks, PolygonMasks
import scipy.io as sio
def hsifromfile(img_path, backend='npy' ) -> np.ndarray:
"""Read an image from bytes.
Args:
backend (str | None): The image decoding backend type.
Returns:
ndarray: Loaded image array.
Examples:
"""
if backend =='npy':
img = np.load(img_path)
return img
@TRANSFORMS.register_module()
class LoadHyperspectralImageFromFiles(BaseTransform):
"""Load multi-channel images from a list of separate channel files.
Required Keys:
- img_path
Modified Keys:
- img
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def __init__(
self,
to_float32: bool = False,
normalized_basis = None,
) -> None:
self.to_float32 = to_float32
self.normalized_basis = normalized_basis
def transform(self, results: dict) -> dict:
"""Transform functions to load multiple images and get images meta
information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded images and meta information.
"""
img = hsifromfile(results['img_path'])
# up_limit = 3500
# low_limit = 600
# new_img = (img - low_limit) / up_limit
# new_img[new_img > 1] = 1
# new_img[new_img < 0] = 0
# img = new_img * 255
if self.normalized_basis == None:
img = img/500
else:
img = img/np.array(self.normalized_basis)
if self.to_float32:
img = img.astype(np.float32)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['ori_shape'] = img.shape[:2]
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'to_float32={self.to_float32}, ')
return repr_str
@TRANSFORMS.register_module()
class LoadAnnotationsPiexlTarget(MMCV_LoadAnnotations):
"""Load and process the ``instances`` and ``seg_map`` annotation provided
by dataset.
The annotation format is as the following:
.. code-block:: python
{
'instances':
[
{
# List of 4 numbers representing the bounding box of the
# instance, in (x1, y1, x2, y2) order.
'bbox': [x1, y1, x2, y2],
# Label of image classification.
'bbox_label': 1,
# Used in instance/panoptic segmentation. The segmentation mask
# of the instance or the information of segments.
# 1. If list[list[float]], it represents a list of polygons,
# one for each connected component of the object. Each
# list[float] is one simple polygon in the format of
# [x1, y1, ..., xn, yn] (n≥3). The Xs and Ys are absolute
# coordinates in unit of pixels.
# 2. If dict, it represents the per-pixel segmentation mask in
# COCO’s compressed RLE format. The dict should have keys
# “size” and “counts”. Can be loaded by pycocotools
'mask': list[list[float]] or dict,
}
]
# Filename of semantic or panoptic segmentation ground truth file.
'seg_map_path': 'a/b/c'
}
After this module, the annotation has been changed to the format below:
.. code-block:: python
{
# In (x1, y1, x2, y2) order, float type. N is the number of bboxes
# in an image
'gt_bboxes': BaseBoxes(N, 4)
# In int type.
'gt_bboxes_labels': np.ndarray(N, )
# In built-in class
'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W)
# In uint8 type.
'gt_seg_map': np.ndarray (H, W)
# in (x, y, v) order, float type.
}
Required Keys:
- height
- width
- instances
- bbox (optional)
- bbox_label
- mask (optional)
- ignore_flag
- seg_map_path (optional)
Added Keys:
- gt_bboxes (BaseBoxes[torch.float32])
- gt_bboxes_labels (np.int64)
- gt_masks (BitmapMasks | PolygonMasks)
- gt_seg_map (np.uint8)
- gt_ignore_flags (bool)
Args:
with_bbox (bool): Whether to parse and load the bbox annotation.
Defaults to True.
with_label (bool): Whether to parse and load the label annotation.
Defaults to True.
with_mask (bool): Whether to parse and load the mask annotation.
Default: False.
with_seg (bool): Whether to parse and load the semantic segmentation
annotation. Defaults to False.
poly2mask (bool): Whether to convert mask to bitmap. Default: True.
box_type (str): The box type used to wrap the bboxes. If ``box_type``
is None, gt_bboxes will keep being np.ndarray. Defaults to 'hbox'.
imdecode_backend (str): The image decoding backend type. The backend
argument for :func:``mmcv.imfrombytes``.
See :fun:``mmcv.imfrombytes`` for details.
Defaults to 'cv2'.
backend_args (dict, optional): Arguments to instantiate the
corresponding backend. Defaults to None.
"""
def __init__(self,
with_mask: bool = False,
with_seg: bool = False,
with_abu: bool = False,
poly2mask: bool = True,
box_type: str = 'hbox',
**kwargs) -> None:
super(LoadAnnotationsPiexlTarget, self).__init__(**kwargs)
self.with_mask = with_mask
self.poly2mask = poly2mask
self.box_type = box_type
self.with_seg = with_seg
self.with_abu = with_abu
def _load_bboxes(self, results: dict) -> None:
"""Private function to load bounding box annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box annotations.
"""
gt_bboxes = []
gt_ignore_flags = []
for instance in results.get('instances', []):
gt_bboxes.append(instance['bbox'])
gt_ignore_flags.append(instance['ignore_flag'])
if self.box_type is None:
results['gt_bboxes'] = np.array(
gt_bboxes, dtype=np.float32).reshape((-1, 4))
else:
_, box_type_cls = get_box_type(self.box_type)
results['gt_bboxes'] = box_type_cls(gt_bboxes, dtype=torch.float32)
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
def _load_labels(self, results: dict) -> None:
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded label annotations.
"""
gt_bboxes_labels = []
for instance in results.get('instances', []):
gt_bboxes_labels.append(instance['bbox_label'])
# TODO: Inconsistent with mmcv, consider how to deal with it later.
results['gt_bboxes_labels'] = np.array(
gt_bboxes_labels, dtype=np.int64)
def _poly2mask(self, mask_ann: Union[list, dict], img_h: int,
img_w: int) -> np.ndarray:
"""Private function to convert masks represented with polygon to
bitmaps.
Args:
mask_ann (list | dict): Polygon mask annotation input.
img_h (int): The height of output mask.
img_w (int): The width of output mask.
Returns:
np.ndarray: The decode bitmap mask of shape (img_h, img_w).
"""
if isinstance(mask_ann, list):
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
rle = maskUtils.merge(rles)
elif isinstance(mask_ann['counts'], list):
# uncompressed RLE
rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
else:
# rle
rle = mask_ann
mask = maskUtils.decode(rle)
return mask
def _process_masks(self, results: dict) -> list:
"""Process gt_masks and filter invalid polygons.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
list: Processed gt_masks.
"""
gt_masks = []
gt_ignore_flags = []
for instance in results.get('instances', []):
gt_mask = instance['mask']
# If the annotation of segmentation mask is invalid,
# ignore the whole instance.
if isinstance(gt_mask, list):
gt_mask = [
np.array(polygon) for polygon in gt_mask
if len(polygon) % 2 == 0 and len(polygon) >= 6
]
if len(gt_mask) == 0:
# ignore this instance and set gt_mask to a fake mask
instance['ignore_flag'] = 1
gt_mask = [np.zeros(6)]
elif not self.poly2mask:
# `PolygonMasks` requires a ploygon of format List[np.array],
# other formats are invalid.
instance['ignore_flag'] = 1
gt_mask = [np.zeros(6)]
elif isinstance(gt_mask, dict) and \
not (gt_mask.get('counts') is not None and
gt_mask.get('size') is not None and
isinstance(gt_mask['counts'], (list, str))):
# if gt_mask is a dict, it should include `counts` and `size`,
# so that `BitmapMasks` can uncompressed RLE
instance['ignore_flag'] = 1
gt_mask = [np.zeros(6)]
gt_masks.append(gt_mask)
# re-process gt_ignore_flags
gt_ignore_flags.append(instance['ignore_flag'])
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
return gt_masks
def _load_masks(self, results: dict) -> None:
"""Private function to load mask annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
"""
h, w = results['ori_shape']
gt_masks = self._process_masks(results)
if self.poly2mask:
gt_masks = BitmapMasks(
[self._poly2mask(mask, h, w) for mask in gt_masks], h, w)
else:
# fake polygon masks will be ignored in `PackDetInputs`
gt_masks = PolygonMasks([mask for mask in gt_masks], h, w)
results['gt_masks'] = gt_masks
def _load_seg_map(self, results: dict) -> None:
"""Private function to load semantic segmentation annotations.
Args:
results (dict): Result dict from
:class:`mmengine.dataset.BaseDataset`.
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
assert results['seg_path'] is not None
img_bytes = fileio.get(results['seg_path'])
img = mmcv.imfrombytes(
img_bytes, flag='grayscale', backend='pillow')
results['gt_seg'] = img.astype('float32')
def _load_abu_map(self, results: dict) -> None:
"""Private function to load semantic segmentation annotations.
Args:
results (dict): Result dict from
:class:`mmengine.dataset.BaseDataset`.
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
assert results['abu_path'] is not None
img = sio.loadmat(results['abu_path'])['data']
results['gt_abu'] = img.astype('float32')
# img_bytes = fileio.get(results['seg_path'])
# img = mmcv.imfrombytes(
# img_bytes, flag='grayscale', backend='pillow')
# results['gt_seg'] = img
def transform(self, results: dict) -> dict:
"""Function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box, label and
semantic segmentation.
"""
if self.with_bbox:
self._load_bboxes(results)
if self.with_label:
self._load_labels(results)
if self.with_mask:
self._load_masks(results)
if self.with_seg:
self._load_seg_map(results)
if self.with_abu:
self._load_abu_map(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(with_bbox={self.with_bbox}, '
repr_str += f'with_label={self.with_label}, '
repr_str += f'with_mask={self.with_mask}, '
repr_str += f'with_seg={self.with_seg}, '
repr_str += f'with_abu={self.with_abu}, '
repr_str += f'poly2mask={self.poly2mask}, '
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
repr_str += f'backend_args={self.backend_args})'
return repr_str
@TRANSFORMS.register_module()
class LoadHyperspectralMaskImageFromFiles(BaseTransform):
"""Load multi-channel images from a list of separate channel files.
Required Keys:
- img_path
Modified Keys:
- img
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def __init__(
self,
to_float32: bool = False,
normalized_basis = None,
color_type: str = 'color',
imdecode_backend: str = 'cv2',
backend_args: Optional[dict] = None
) -> None:
self.to_float32 = to_float32
self.normalized_basis = normalized_basis
self.color_type = color_type
self.imdecode_backend = imdecode_backend
self.backend_args: Optional[dict] = None
if backend_args is not None:
self.backend_args = backend_args.copy()
def transform(self, results: dict) -> dict:
"""Transform functions to load multiple images and get images meta
information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded images and meta information.
"""
img = hsifromfile(results['img_path']+'_rd.npy')
# up_limit = 3500
# low_limit = 600
# new_img = (img - low_limit) / up_limit
# new_img[new_img > 1] = 1
# new_img[new_img < 0] = 0
# img = new_img * 255
if self.normalized_basis == None:
img = img/1000
else:
img = img/np.array(self.normalized_basis)
if self.to_float32:
img = img.astype(np.float32)
maskname = results['mask_path']+'_mask.png'
mask_bytes = fileio.get(
maskname, backend_args=self.backend_args)
mask = mmcv.imfrombytes(
mask_bytes, flag=self.color_type, backend=self.imdecode_backend)
if self.to_float32:
mask = mask.astype(np.float32)
mask[mask == 255] = 1
mask = np.repeat(mask, 17, axis = 2)
img = img * mask
results['img'] = img
results['img_shape'] = img.shape[:2]
results['ori_shape'] = img.shape[:2]
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'to_float32={self.to_float32}, ')
return repr_str
def to_tensor_HSI(
data: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
Returns:
torch.Tensor: the converted data.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
# rw by lzx
if data.dtype == '>i2':
return torch.from_numpy(data.astype(np.float32))
else:
return torch.from_numpy(data)
else:
raise TypeError(f'type {type(data)} cannot be converted to tensor.')
@TRANSFORMS.register_module()
class PackDetInputs_HSI(BaseTransform):
"""Pack the inputs data for the detection / semantic segmentation /
panoptic segmentation.
The ``img_meta`` item is always populated. The contents of the
``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- ``img_id``: id of the image
- ``img_path``: path to the image file
- ``ori_shape``: original shape of the image as a tuple (h, w)
- ``img_shape``: shape of the image input to the network as a tuple \
(h, w). Note that images may be zero padded on the \
bottom/right if the batch tensor is larger than this shape.
- ``scale_factor``: a float indicating the preprocessing scale
- ``flip``: a boolean indicating if image flip transform was used
- ``flip_direction``: the flipping direction
Args:
meta_keys (Sequence[str], optional): Meta keys to be converted to
``mmcv.DataContainer`` and collected in ``data[img_metas]``.
Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')``
"""
mapping_table = {
'gt_bboxes': 'bboxes',
'gt_bboxes_labels': 'labels',
'gt_masks': 'masks'
}
def __init__(self,
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')):
self.meta_keys = meta_keys
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
- 'data_sample' (obj:`DetDataSample`): The annotation info of the
sample.
"""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
# To improve the computational speed by by 3-5 times, apply:
# If image is not contiguous, use
# `numpy.transpose()` followed by `numpy.ascontiguousarray()`
# If image is already contiguous, use
# `torch.permute()` followed by `torch.contiguous()`
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533
# for more details
if not img.flags.c_contiguous:
img = np.ascontiguousarray(img.transpose(2, 0, 1))
img = to_tensor(img)
else:
img = to_tensor(img).permute(2, 0, 1).contiguous()
packed_results['inputs'] = img
if 'gt_ignore_flags' in results:
valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
data_sample = DetDataSample()
instance_data = InstanceData()
ignore_instance_data = InstanceData()
for key in self.mapping_table.keys():
if key not in results:
continue
if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
if 'gt_ignore_flags' in results:
instance_data[
self.mapping_table[key]] = results[key][valid_idx]
ignore_instance_data[
self.mapping_table[key]] = results[key][ignore_idx]
else:
instance_data[self.mapping_table[key]] = results[key]
else:
if 'gt_ignore_flags' in results:
instance_data[self.mapping_table[key]] = to_tensor(
results[key][valid_idx])
ignore_instance_data[self.mapping_table[key]] = to_tensor(
results[key][ignore_idx])
else:
instance_data[self.mapping_table[key]] = to_tensor(
results[key])
data_sample.gt_instances = instance_data
data_sample.ignored_instances = ignore_instance_data
if 'proposals' in results:
proposals = InstanceData(
bboxes=to_tensor(results['proposals']),
scores=to_tensor(results['proposals_scores']))
data_sample.proposals = proposals
if 'gt_seg_map' in results:
gt_sem_seg_data = dict(
sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
img_meta = {}
for key in self.meta_keys:
assert key in results, f'`{key}` is not found in `results`, ' \
f'the valid keys are {list(results)}.'
img_meta[key] = results[key]
data_sample.set_metainfo(img_meta)
packed_results['data_samples'] = data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(meta_keys={self.meta_keys})'
return repr_str
|