File size: 6,190 Bytes
e8f2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) OpenMMLab. All rights reserved.
# written by lzx
from mmdet.registry import DATASETS
from mmdet.datasets.api_wrappers import COCO
from .HSI import HSIDataset

@DATASETS.register_module()
class SIRSTDataset(HSIDataset):
    """Dataset for COCO."""

    METAINFO = {
        'classes':
        ('object',),
        # palette is a list of color tuples, which is used for visualization.
        'palette':
        [(220, 20, 60),]
    }
    COCOAPI = COCO

# @DATASETS.register_module()
# class SIRSTDataset(CocoDataset):
#     """Dataset for COCO."""
#
#     METAINFO = {
#         'classes':
#         ('object',),
#         # palette is a list of color tuples, which is used for visualization.
#         'palette':
#         [(220, 20, 60),]
#     }
#     COCOAPI = COCO
#     # ann_id is unique in coco dataset.
#     ANN_ID_UNIQUE = True
#
#     def load_data_list(self) -> List[dict]:
#         """Load annotations from an annotation file named as ``self.ann_file``
#
#         Returns:
#             List[dict]: A list of annotation.
#         """  # noqa: E501
#         with get_local_path(
#                 self.ann_file, backend_args=self.backend_args) as local_path:
#             self.coco = self.COCOAPI(local_path)
#         # The order of returned `cat_ids` will not
#         # change with the order of the `classes`
#         self.cat_ids = self.coco.get_cat_ids(
#             cat_names=self.metainfo['classes'])
#         self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
#         self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)
#
#         img_ids = self.coco.get_img_ids()
#         data_list = []
#         total_ann_ids = []
#         for img_id in img_ids:
#             raw_img_info = self.coco.load_imgs([img_id])[0]
#             raw_img_info['img_id'] = img_id
#
#             ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
#             raw_ann_info = self.coco.load_anns(ann_ids)
#             total_ann_ids.extend(ann_ids)
#
#             parsed_data_info = self.parse_data_info({
#                 'raw_ann_info':
#                 raw_ann_info,
#                 'raw_img_info':
#                 raw_img_info
#             })
#             data_list.append(parsed_data_info)
#         if self.ANN_ID_UNIQUE:
#             assert len(set(total_ann_ids)) == len(
#                 total_ann_ids
#             ), f"Annotation ids in '{self.ann_file}' are not unique!"
#
#         del self.coco
#
#         return data_list
#
#     def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:
#         """Parse raw annotation to target format.
#
#         Args:
#             raw_data_info (dict): Raw data information load from ``ann_file``
#
#         Returns:
#             Union[dict, List[dict]]: Parsed annotation.
#         """
#         img_info = raw_data_info['raw_img_info']
#         ann_info = raw_data_info['raw_ann_info']
#
#         data_info = {}
#
#         # TODO: need to change data_prefix['img'] to data_prefix['img_path']
#         img_path = osp.join(self.data_prefix['img'], img_info['file_name'])
#         if self.data_prefix.get('seg', None):
#             seg_map_path = osp.join(
#                 self.data_prefix['seg'],
#                 img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix)
#         else:
#             seg_map_path = None
#         data_info['img_path'] = img_path
#         data_info['img_id'] = img_info['img_id']
#         data_info['seg_map_path'] = seg_map_path
#         data_info['height'] = img_info['height']
#         data_info['width'] = img_info['width']
#
#         instances = []
#         for i, ann in enumerate(ann_info):
#             instance = {}
#
#             if ann.get('ignore', False):
#                 continue
#             x1, y1, w, h = ann['bbox']
#             inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
#             inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
#             if inter_w * inter_h == 0:
#                 continue
#             if ann['area'] <= 0 or w < 1 or h < 1:
#                 continue
#             if ann['category_id'] not in self.cat_ids:
#                 continue
#             bbox = [x1, y1, x1 + w, y1 + h]
#
#             if ann.get('iscrowd', False):
#                 instance['ignore_flag'] = 1
#             else:
#                 instance['ignore_flag'] = 0
#             instance['bbox'] = bbox
#             instance['bbox_label'] = self.cat2label[ann['category_id']]
#
#             if ann.get('segmentation', None):
#                 instance['mask'] = ann['segmentation']
#
#             instances.append(instance)
#         data_info['instances'] = instances
#         return data_info
#
#     def filter_data(self) -> List[dict]:
#         """Filter annotations according to filter_cfg.
#
#         Returns:
#             List[dict]: Filtered results.
#         """
#         if self.test_mode:
#             return self.data_list
#
#         if self.filter_cfg is None:
#             return self.data_list
#
#         filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
#         min_size = self.filter_cfg.get('min_size', 0)
#
#         # obtain images that contain annotation
#         ids_with_ann = set(data_info['img_id'] for data_info in self.data_list)
#         # obtain images that contain annotations of the required categories
#         ids_in_cat = set()
#         for i, class_id in enumerate(self.cat_ids):
#             ids_in_cat |= set(self.cat_img_map[class_id])
#         # merge the image id sets of the two conditions and use the merged set
#         # to filter out images if self.filter_empty_gt=True
#         ids_in_cat &= ids_with_ann
#
#         valid_data_infos = []
#         for i, data_info in enumerate(self.data_list):
#             img_id = data_info['img_id']
#             width = data_info['width']
#             height = data_info['height']
#             if filter_empty_gt and img_id not in ids_in_cat:
#                 continue
#             if min(width, height) >= min_size:
#                 valid_data_infos.append(data_info)
#
#         return valid_data_infos