File size: 2,575 Bytes
0af0696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import os
import tempfile
import cv2
import numpy as np
from mmdet.apis import DetInferencer

# Helper to load model
inferencer = None
def load_model(config_path, checkpoint_path):
    global inferencer
    inferencer = DetInferencer(model=config_path, weights=checkpoint_path)
    return "Model loaded."

def infer_image(image):
    if inferencer is None:
        return "Please load a model first.", None
    result = inferencer(image)
    vis = result["visualization"]
    if isinstance(vis, list):
        vis = vis[0]
    return "", vis

def infer_video(video):
    if inferencer is None:
        return "Please load a model first.", None
    temp_dir = tempfile.mkdtemp()
    cap = cv2.VideoCapture(video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out_path = os.path.join(temp_dir, "result.mp4")
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        result = inferencer(frame)
        vis = result["visualization"]
        if isinstance(vis, list):
            vis = vis[0]
        out.write(vis[:,:,::-1])
    cap.release()
    out.release()
    return "", out_path

def ui():
    with gr.Blocks() as demo:
        gr.Markdown("# SpecDETR Demo: Image and Video Detection\nUpload your config (.py) and checkpoint (.pth) to start.")
        with gr.Row():
            config = gr.File(label="Config File (.py)")
            checkpoint = gr.File(label="Checkpoint (.pth)")
            load_btn = gr.Button("Load Model")
            load_status = gr.Textbox(label="Status", interactive=False)
        load_btn.click(load_model, inputs=[config, checkpoint], outputs=load_status)
        with gr.Tab("Image"):
            img_input = gr.Image(type="numpy")
            img_output = gr.Image()
            img_btn = gr.Button("Detect on Image")
            img_status = gr.Textbox(label="Status", interactive=False)
            img_btn.click(infer_image, inputs=img_input, outputs=[img_status, img_output])
        with gr.Tab("Video"):
            vid_input = gr.Video()
            vid_output = gr.Video()
            vid_btn = gr.Button("Detect on Video")
            vid_status = gr.Textbox(label="Status", interactive=False)
            vid_btn.click(infer_video, inputs=vid_input, outputs=[vid_status, vid_output])
    return demo

demo = ui()

def main():
    demo.launch()

if __name__ == "__main__":
    main()