|
import os |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import subprocess |
|
|
|
|
|
HF_TOKEN = "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" |
|
|
|
|
|
required_modules = ["torch", "transformers"] |
|
for module in required_modules: |
|
try: |
|
__import__(module) |
|
print(f"✅ {module} zaten yüklü.") |
|
except ImportError: |
|
print(f"⚠️ {module} eksik! Kuruluyor... 🛠️") |
|
subprocess.run(["pip", "install", module], check=True) |
|
print(f"✅ {module} başarıyla kuruldu!") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"✅ Kullanılan Cihaz: {device}") |
|
|
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-Math-1.5B" |
|
|
|
try: |
|
print(f"📌 {MODEL_NAME} modeli indiriliyor ve yükleniyor...") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN, trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
token=HF_TOKEN, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
|
|
print("✅ Model başarıyla yüklendi!") |
|
except Exception as e: |
|
print(f"⚠️ Model yükleme başarısız! Hata: {e}") |
|
print("📌 Çözüm: Hugging Face tokenini ve model erişimini kontrol et.") |
|
|
|
|
|
while True: |
|
user_input = input("👤 Sen: ") |
|
if user_input.lower() in ["exit", "çıkış"]: |
|
print("🔄 Kapatılıyor...") |
|
break |
|
|
|
inputs = tokenizer(user_input, return_tensors="pt").to(device) |
|
outputs = model.generate(**inputs, max_length=100) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(f"🤖 Bot: {response}") |
|
|