Spaces:
Sleeping
Sleeping
Create trainer
Browse files
trainer
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
4 |
+
from peft import LoraConfig, get_peft_model
|
5 |
+
from trl import SFTTrainer
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
# Charger le modèle et le tokenizer
|
9 |
+
model_name = "mistralai/Mistral-7B-v0.1" # Tu peux changer pour DeepSeek R1 7B/8B
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
load_in_4bit=True, # QLoRA
|
15 |
+
device_map="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Charger le dataset (peut être un dataset HF ou un CSV local)
|
19 |
+
dataset = load_dataset("your_dataset") # Remplace par ton dataset HF
|
20 |
+
|
21 |
+
# Configurer LoRA (adapté pour QLoRA)
|
22 |
+
lora_config = LoraConfig(
|
23 |
+
r=16,
|
24 |
+
lora_alpha=32,
|
25 |
+
target_modules=["q_proj", "v_proj"],
|
26 |
+
lora_dropout=0.05,
|
27 |
+
bias="none",
|
28 |
+
task_type="CAUSAL_LM"
|
29 |
+
)
|
30 |
+
model = get_peft_model(model, lora_config)
|
31 |
+
|
32 |
+
# Arguments d'entraînement
|
33 |
+
training_args = TrainingArguments(
|
34 |
+
output_dir="./results",
|
35 |
+
per_device_train_batch_size=2,
|
36 |
+
gradient_accumulation_steps=4,
|
37 |
+
num_train_epochs=3,
|
38 |
+
learning_rate=2e-4,
|
39 |
+
fp16=True,
|
40 |
+
optim="paged_adamw_8bit",
|
41 |
+
logging_dir="./logs",
|
42 |
+
save_strategy="epoch"
|
43 |
+
)
|
44 |
+
|
45 |
+
# Fine-tuning avec SFTTrainer
|
46 |
+
trainer = SFTTrainer(
|
47 |
+
model=model,
|
48 |
+
train_dataset=dataset["train"],
|
49 |
+
dataset_text_field="question", # Adapter selon le format du dataset
|
50 |
+
peft_config=lora_config,
|
51 |
+
args=training_args
|
52 |
+
)
|
53 |
+
|
54 |
+
# Interface Gradio
|
55 |
+
def train():
|
56 |
+
trainer.train()
|
57 |
+
model.push_to_hub("your_hf_username/fine-tuned-model")
|
58 |
+
return "Fine-tuning terminé et modèle uploadé sur Hugging Face !"
|
59 |
+
|
60 |
+
gr.Interface(fn=train, inputs=[], outputs="text").launch()
|