Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments | |
from peft import LoraConfig, get_peft_model | |
from trl import SFTTrainer | |
from datasets import load_dataset | |
# Charger le modèle et le tokenizer | |
model_name = "mistralai/Mistral-7B-v0.1" # Tu peux changer pour DeepSeek R1 7B/8B | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
load_in_4bit=True, # QLoRA | |
device_map="auto" | |
) | |
# Charger le dataset (peut être un dataset HF ou un CSV local) | |
dataset = load_dataset("facebook/natural_reasoning") # Remplace par ton dataset HF | |
# Configurer LoRA (adapté pour QLoRA) | |
lora_config = LoraConfig( | |
r=16, | |
lora_alpha=32, | |
target_modules=["q_proj", "v_proj"], | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM" | |
) | |
model = get_peft_model(model, lora_config) | |
# Arguments d'entraînement | |
training_args = TrainingArguments( | |
output_dir="./results", | |
per_device_train_batch_size=2, | |
gradient_accumulation_steps=4, | |
num_train_epochs=3, | |
learning_rate=2e-4, | |
fp16=True, | |
optim="paged_adamw_8bit", | |
logging_dir="./logs", | |
save_strategy="epoch" | |
) | |
# Fine-tuning avec SFTTrainer | |
trainer = SFTTrainer( | |
model=model, | |
train_dataset=dataset["train"], | |
dataset_text_field="question", # Adapter selon le format du dataset | |
peft_config=lora_config, | |
args=training_args | |
) | |
# Interface Gradio | |
def train(): | |
trainer.train() | |
model.push_to_hub("sbstagiare/fine-tuned-model") | |
return "Fine-tuning terminé et modèle uploadé sur Hugging Face !" | |
gr.Interface(fn=train, inputs=[], outputs="text").launch() | |